

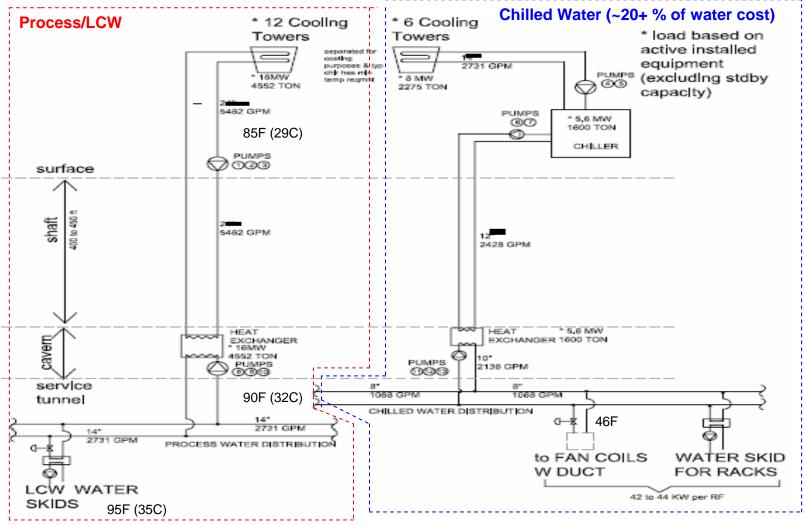
Water System

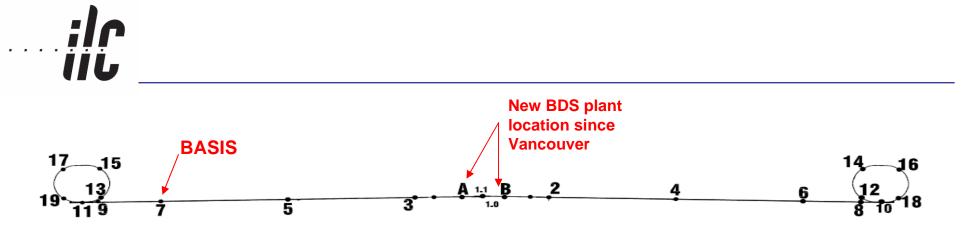
Emil Huedem CFS Group Sep 7 2006

<u>OUTLINE</u>

Water System Design

Thermal Loads


Method of Costing Water Plants


Marc Tasks for CFS Mechanical

Summary

• Schematic June 1 - Water Plant at Shaft 7(basis) - Vancouver & current

WATER PLANT LOCATION

Plant No.		Area it serves
17	e- DR	e- DR load total divided by 4 (except for chilled water only the alcoves are considered)
	e- DR	e- DR load total divided by 4 (except for chilled water only the alcoves are considered)
	e- DR	e- DR load total divided by 4 (except for chilled water only the alcoves are considered)
	e-DR	e- DR load total divided by 4 (except for chilled water only the alcoves are considered)
11	RTML	Half of RTML total load
9	e- Source	e- source total load divided by 2 (wag) Need to be updated per Clay's latest email (need to rearrange distribution later)
7	ML	Main Linac Total Load x No fo RF at this shaft (128) divided by total no of ML RF (624)
5	ML & e+ source	Same as Shaft 7 (but with 120 total RF) plus half of e+ source total load
3	ML	Same as Shaft 7 (but with 64 total RF) (excluded e+ source transport line for now)
A	BDS and Dump	Half of BDS total load and one 18MW dump

Plant No	э.	Area it serves
	BDS and	
в	Dump	Half of BDS total load and one 18MW dump
2	ML	Same as Shaft 7 (but with 64 total RF)
		Same as Shaft 5 plus half of e- source load (wag) Need to be
	ML & e+	updated per Clay's latest email (need to rearrange
4	source & e-	distribution later)
		Main Linac Total Load x No fo RF at this shaft (128) divided by
		total no of ML RF (624)
8	RTML	Half of RTML total load
		a. DB lead total divided by 4 (avaent for shilled writes only the
12	e+ DR	e+ DR load total divided by 4 (except for chilled water only the alcoves are considered)
		e+ DR load total divided by 4 (except for chilled water only the
14	e+ DR	alcoves are considered)
		e+ DR load total divided by 4 (except for chilled water only the
18	e+ DR	alcoves are considered)
		e+ DR load total divided by 4 (except for chilled water only the
16	e+ DR	alcoves are considered)

<u>Thermal Loads</u>

Pursue info from Area System leaders, Magnet group and POC.

Mostly total load only (..and changing)

Tabulated (but we're told everything is still preliminary)

Other than the load at shaft 7 (ML), the current Thermal load list is just used as multiplier for sizing, cost ...and electrical power usage tabulation.

Total Thermal load pre-Vancouver was 296MW, currently at 222MW.

Total Heat Load List as of Aug 30 2006

THERMAL LOAD USED (in MW) (and still cl	Updated Aug 25 2006 CFS		
Area System	LCW	Air / Chilled Water (does not include heat of compression)	Total	Sources
SOURCES e-	3.72	1.31	5.03	Aug 21 (Clay) 4.36;3.72;2.53 MW for LCW, 1.53;1.31;0.89 MW for Air- Numbers are PSTD (peak simultaneous thermal demand);INPTC (installed nameplate thermal capacity);ATL (Average thermal demand)
SOURCES e+	15.8	5.55	21.35	Aug 21 (Clay) 22.8;15.8;10.7 MW for LCW, 8.00;5.55;3.80 MW for Air - PSTD (peak simultaneous thermal demand) ;INPTC (installed nameplate thermal capacity);ATL (average thermal demand)
DR e-	DRAF 6.71	3.05	9.762	Aug 10 (Andy)- <u>except load to air is not used</u> (which is assume to be dissipated to ventilation air) LOADS STILL NEED TO BE CHECKED WITH MAGNET GROUPvery preliminary accdg to Andy
DR e+	8.25	4.90	13.154	Aug 10 (Andy)- <u>except load to air is not used</u> (which is assume to be dissipated to ventilation air) LOADS STILL NEED TO BE CHECKED WITH MAGNET GROUPvery preliminary accdg to Andy
RTML	12	2.4	14.4	May 24 (Jerry, PT) preliminary ~7 MW per RTML
MAIN LINAC	78	26.83	104.832	Jun 1 (Shigeki et. al.) spreadsheet per RF x 624 RF
BDS	14.71	2.60	17.3	Aug 10 (Andrei) Rough 17.3 MW for 14mrad TO BE CHECKEDvery very preliminary accdg to Andrei. Assume 85%/ 15% distribution to lcw/air
DUMPS	36	0	36	Aug 15 (Andrei) -reconfigure such that one or two plant sized for(2) 18MW serves (6) 18MW dumps, only (2) are active at any time. Aug 25 (Fred), adjust shaft locations
	175	49	222	

MAIN LINAC HEAT LOAD PER RF

Currently NO heat load to air from Klystron, Numbers from Shigeki spreadsheet / email Apr 2006

MAIN LINAG ELECTRON & DOCTOON															
MAIN LINAC - ELECTRON & POSITRON					To Dela	dana di 101-				An Chiller	d later	To 21-			
					To Delar	itzed Wa				to Chilled	1 Wate	To Air			
							Maxi								
							mum								
					Supply	Delta	Allow								
				Heat	Temp	Tempe			Acceptab				Max		
			Total Heat	Load to	(variati	rature		(water)	le Temp			Heat Load			
	Quantity		Load	Water	on) ((C	ure			Heat Lo			Temp		
Components	Per 36m	Location	(KW)	(KW)	C)	delta)	(Bar)	drop Bar	delta C	Water (KW)	(KW)	(C)	Source	
LCW Skid Pump 5 Hp (placehodler)	1	Service Tunnel	4.14	0	N/A	N/A	N/A	N/A	None	0		4.14		* emil - 5 HP pump placeh	
Fancoils (5 ton Chilled Water) 1 Hp	2	Service Tunnel	1.66	0	N/A	N/A	N/A	N/A	None	0		1.66		* emil - (2) 1HP 5Ton Fand	coll placeholder
Rack Water Skid	0.25	Service Tunnel	1.04	0	N/A	N/A	N/A	N/A	None	0		1.04		* emil - 1(5Hp) every 4 RF	(placeholder)
Lighting Heat Dissipation ~1.3W/sf		Service Tunnel	1.65	0	N/A	N/A	N/A	N/A	None	0		1.65		* Clay - 14 W per sq m	
Lighting Heat Dissipation ~1.3W/sf		Accelerator Tunnel	1.65	0	N/A	N/A	N/A	N/A	None	0		1.65		* Clay - 14 W per sq m	
People Heat Dissipation 500btuh each	0	Accelerator Tunnel	0.00	0	N/A	N/A	N/A	N/A	None	0		0.00		* emil - placeholder	
People Heat Dissipation 500btuh each	2	Service Tunnel	0.29	0	N/A	N/A	N/A	N/A	None	0		0.29		* emil - placeholder	
AC Pwr Transformer 34.548 kV	0.25	Service Tunnel	2.00	0	N/A	N/A	N/A	N/A	None	0		2		* Clay email 3-14-06 typical 112.	5 kVa oli zfmr
Emerg. AC Pwr Transformer 34.548 kV		Service Tunnel	1.00	0	N/A	N/A	N/A	N/A	None	0		1.3		 Clay email 3-14-06 typical 75 k 	
RF Charging Supply 34.5 Kv AC-11KV														* C.Jensen emsil 2-27-06 183 kW	
DC	1/26 m	Service Tunnel	19.00	7.50						0		11.5		**Shipeld Apr 18 2005 ** Clay 5 meeting	-25-06 LLRF
DC	1/30 III	Service Tunnel	19.00	7.50						0		11.5		morung	
Modulator		Service Tunnel	7.50	3,50			28.8			0		4		* Shigeki Fukude Emeli 3-1-06 **	Shiqeki Apr 18 20
Pulse Transformer		Service Tunnel	6.00	5.00						0		1		* Shipeki Apr 18 2006	
Klystron Socket Tank		Service Tunnel	1.00	1.00						0		0		**Shipeld Apr 18 2006	
Klystron Focusing Coll		Service Tunnel	8.40	8.40	*34>					0		0		* Shigeki Fukuda Email 4-05-06	
Klystron Collector		Service Tunnel	61.00	61.00	*35>			2		0		0		* Shigeki Fukude Emeli 3-1-06	
Klystron Body		Service Tunnel	10.00	10.00	*35>			5	None	0		0		* Shigeki Fukude Emeli 3-1-06	
Kiystron Windows		Service Tunnel	0.50	0.50	*35>			1	nons	ő		0		* Shigeki Fukude Emel 3-1-06	
reparted ministeria		der se runne	0.00	0.00										angen revers trian 2-2-00	
														* Shigeki Fukuda Email 3-30-06	
Relay Racks		Service Tunnel	13.3	0.0	N/A	N/A	N/A	N/A	None	12.4	8	0		(chilled water) ** Ray largon En	nail 6-16 2005
Circulators & Dummy Load		Accelerator Tunnel	24.3	24.3						0		0		** Shipeki Email Apr 25 2006	7
Waveguide		Accelerator Tunnel	4.00	4.00	N/A	N/A		N/A		0		0.00		* Shigeki Fukuda Email 3-30-06	
Other components?????		7777								0		0	N/A		
Total			168.4	125.2						12.8	0	30.23			
RF Component only Loads			154.95			-									
Total Heat load to Air & Chilled	water	per RF		43.0	KW			47.804	1.62683	5.7183	19167	29,8775			
Total Heat load to LCW per RF				125	KW			7.03	3.25375	11.436	93125	\sim	Т	he only chang	qe
						•								-	
														Aug 16 2006	

Costing / Sizing Method

Size & Estimate Shaft 7 Water Plant

Used Means 2006 cost book, Vendors budget prices, previous project info and some wags for costing.

Scale all other plants based on loads (except the tunnel piping is scaled based on length). - (using Shaft 7 plant as reference) and distributing it by area system.

Plant Scaling / Multiplier based on loads

PLANT	LOAD	S (MW)	Multip	Area									
	LCW/p rocess	AIR/C hw *	Process	Chw	e- source	e+ source	DR	RTML	Main Linac	BDS	Exp'm t	Gen'l &	
17	1.7	0.2	10%	4%			100%						
15	1.7	0.2	10%	4%			100%						
19	1.7	0.2		4%			100%						
13	1.7	0.2	10%	4%			100%						
11	6.0	1.2	38%	22%				100%					
9	1.9	0.7	12%	12%	100%								
7	16.0	5.5		100%					100%				
5	22.9	7.9		144%		34%			66%				
3	8.0	2.8	50%	50%					100%				
A	25.4	1.3		24%						100%			
В	25.4	1.3	158%	24%						100%			
2	8.0			50%					100%				
4	24.8			156%	7.5%	31.9%			60.6%				
6	16.0	5.5		100%					100%				
8	6.0	1.2		22%				100%					
12	2.1	0.3		6%			100%						
14	2.1	0.3		6%			100%						
18	2.1	0.3		6%			100%						
16	2.1	0.3	13%	6%			100%						

ir ii

Marc's Task / CFS mechanical / from Vancouver

- 1) Assess CFS mechanical in general
- 2) Investigate skid cost when produced in mass quantities
- Investigate savings associated with 2X delta
 T in process water
- 4) General issues associated with removal of chilled water (Temperatures, stability, etc)
- 5) Reduction of mechanical system capital cost
- 6) Watt (cooling power) per watt (heat rejection)

Cost Reduction List. (Page 1) (see separate pdf for clearer copies)

SEP 7 2006 DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT (estimates need to be checked) eh REDUCTION OF CFS MECHANICAL COST (Process Cooling WBS Shown) (Values in \$K)

	Bold red indicate Items for Marc TOTAL M LINAC BDS Started: Aug 10 2006									
	ltems	% reduction based on Initial CostUul 14 numbers	% reduction based on Initial CostUul 14 numbers	reduction based on Initial Cost/Jul	Impact/ Notes	BHP IMPAC T				
Α	Initial Cost (July 14 2006)				Based on 296 MW thermal Load (placeholders)					
в	Check Estimate	later	later	later	later					
с	Updated Thermal Load, added missing items, Corrected errors & reduced Skid to 2X (1 skid to 2 RF), = Suggest to use this as NEW BASELINE	23%	3%	62%	Based on current Thermal load 222 MW (Aug 30 2006) - Note that these numbers are preliminary according to Area System/Contact. BDS load down from ~70MW to ~17MW (preliminary) Numbers from Magnet Group are not considered. It doesn't include the Sources and BDS changes Still waiting for more Vendors into on various Skid sizing. Currently use \$90K per skid (but doesn't include quantity discount.					
	The % in the following are appro	oximate and	d are %re	eductio	n as compared to the Jul 14 estimate.					
1	Make All Chiller Aircooled (1 Skid /2 RF; 20 Delta T on Process; Updated Load per Item C)	25%	6%	63%	Remove Cooling Tower & Pump for the Chillers. Chillers can be located outside the bldg (reduced bldg cost not included). KW electrical capacity increase by ~10 to ~15% There will be no free cooling during winter. Operating cost increase.	++				
2	Reduce LCW Skid to 1 Skid to 4 RF at <u>20</u> delta	29%	10%	85%	Still waiting for more Vendors into on various Skid sizi <u>ng. Currently use \$90K per skid, but doesn't include</u> quantity discount.	TBD				
3	Increase Process water delta T to 40 F (with 1 skid 2 RF)	32% about 40% of this is due to load reduction and correction	14%	67%	Impact of 40 delta F on RF water load not included (by???)/ Piping scheme to get 40F delta in Rf components not considered 40 delta F is also acceptable in Magnet load (Meeting with magnet Aug 22 2006) Note that BDS Water Dump has 54F delta. Since cost is scaled from Shaft 7, this cost reduction may not be reflected (see add; item below) Impact on BHPTBD	TBD				
4	Increase Process water delta T to 40 F (with 1 skid 4 RF)	38% about 40% of this is due to load reduction and correction	21%	70%	Impact of 40 delta F on RF water load not included (by???)/ Piping scheme to get 40F delta in Rf components not considered 40 delta F is also acceptable in Magnet load (Meeting with magnet Aug 22 2006) Note that BDS Water Dump has 54F delta. Since cost is scaled from Shaft 7, this cost reduction may not be reflected (see add; item below) Impact on BHPTBD	TBD				

Cost Reduction List. (Page 2)

		45%	age	-		
5	Remove Chilled Water ** (Water Cooled Racks will have dedicated chiller- preliminary concept based on Liebert XDF. Cost for this is assumed as included with other group)	45% about 40% of this is due to load reduction and correction	36%	67%	Warm Temperature / Temperature stability could be an issue Main Linac (Adolphsen email Sep 5 2006) require 29C (84F) air temperature. Need Chilled Fancoil for this Chilled Water system Is still needed for BDS (requirement) A CFD analysis of the space will be pursued to provide the variation of temperature across the tunnel to see if acceptable. OSHA Sec 3 Chap 4 Heat Stress at 95F at 55dewpoint equate to WGBT of 77F adequate for continuous heavy work. May require chilled water fancoils to maintain to this. Based on Libert cost (info sent to HLRF Sep 1) for rack with chir,. Assume cost included with other group for this scheme. NOTE That cost reduction in fancoil cost is not included. Impact of BHPTBD	_
6	as a route a crizi d'anas a piping	32% about 40% of this is due to load reduction and correction	16%		Warm Temperature / Temperature stability could be an issue Main Linac (Adolphsen email Sep 5 2008) require 29C (84F) air temperature. Need Chilled Fancoil for this Chilled Water system Is still needed for BDS (requirement) A CFD analysis of the space will be pursued to provide the variation of temperature across the tunnel to see if acceptable. OSHA Sec 3 Chap 4 Heat Stress at 95F at 55dewpoint equate to WGBT of 77F adequate for continuous heavy work. May require chilled water fancoils to maintain to this. Large footprint for the dedicated rack chiller. Could be space issue Dedicated Chiller Skid for each water cooled RF Racks (1 per RF), wag at \$25installed cost based on phone with Vendor (Ecobay) but to be checked later, and based on aircooled (Libert) email at \$15K + install (but this is only aircooled, 10 Ton Ecobay budget of \$40K not used for now. NOTE That cost reduction in fancoil cost is not included. Impact of BHPTBD	твD
7	Reduce CHW (Variation of Item 5 except provide chilled water only on smaller area in the service tunnel for worker to work)	5				
8	Eliminate HX and Pump and Cavern				higher water pressure in the tunnel piping. Water Skid should be sized to accept higher pressure (Dan Lacedra of Bornquist suggested 15% increase in cost of the skid for this) Savings in Cavern space for equipment (not considered atthis point) Glycol in the tunnel piping, issue or no???	
9	One Large LCW Distribution from the Cavern				No data for large 14" to 18" ss pipe. (discussed with two vendors- Aug 22 2006) Large piping main at Stainless and Cavern pump at Stainless will be very expensive	
10	(1 Skid to 8 RF)					
11	Provide one plant for BDS					
12	Separate Estimate for BDS Plant at 54delta F					
13	Various HX approach temperatures vs HX cost					

Delta T

_ Delta T							
HAFT 7 LCW PLANT pumps estime	ate <u> (Main Linac Or</u>	nly)					Aug 28 20
			adjusted load (wag	adjusted load (wag	adjusted load (wag	adjusted oad (wag	adjusted load (wa
	BASE: with chilled		portion of load to air	portion of load to air	portion of load to air	portion o load to air	portion of load to
	water to handle other	with chilled water to	back to water)- No	back to water)- No	back to water)- No	back to ater)- No	back to water)- N
	air load	handle other air load	chw	chw	chw	Criw (chw
CW Load per RF (thermal KW) **	125	125	148	148	148	148	1
elta T (delta F)	20	20	26	26	30	40	
o of RF at Shaft 7 Plant	128	128	128	128	128	128	
ow per RF (gpm)	43	43	39	39	34	25	
otal Flow for shaft 7 plant	5.462	5.462	4,975	4,975	4.312	3,234	
CW Plant for shaft 7 (MW)	16	16	19	19	19	19	
ow at Tunnel (gpm)	2,731	2,731	2 487	2 487	2	1,617	1,6
121 1	2,101	2,701				varies	1,9
ROCESS PUMP FROM CAVERN TO SKID			2 pipe les	s (pipe 🔼			
ping at Tunnel	varies					10"	
ze along tunnel length	4 Att varies	varies	varies in	tunnel) 🚟	1	vanes	
ax Pipe Size (near base of shaft)	14" 14"	12'		12		42%	
% partion of this in tunnel pipi	41% 41%	28%	6%	38%		427	
verage Pressure Drop (ft / 100 ft)		1.711	0.73	0.76		0.703	
verage Velocity (fps) - low-	0.51	6.5	4.73	4.8		4.3	
unnel Piping Only Cost (K\$)	0.51 4,364	\$ 3,211	\$ 3,547	\$ 3,595	s	4.3 1.840	\$ 2,3
% reduction cost in turnel piping or	4.22 N/A	26%	19%	18%		58%	4
(Main linac Process Cooling Co	4.22						
% reduction cost based on overall ML Process Cooling (inclining)		TBD	TBD	TBD	TBD	TBD	Т
(Main line: Total CFS Cost)							
% reduction in cost based on overell ML CFS cost (inclining)		TBD	TBD	TBD	TBD	TBD	TE
ength Tunnel Pipe (one leg) ft-supply& return (~5.1Km)	16728	16728	16728	16728	16728	16728	
essure Drop Piping Only - ft	85	285	122	127	134	118	1
verall % Reduction in cost based on Total Process Cool							
ain Piping from Tunnel to Cavern							
Ze	18"	18"	18"	18"	16"	14	
erage Pressure Drop (ft / 100 ft)	0.93	0.93	0.77	0.77	1.06	1.08	
pe velocity (fps)	7.84	7.84	7.14	7.14	7.83	7.25	5 7
ength Tunnel Pipe (supply&return) wag	150	150	150	150	150	150	
essure Drop Main Piping -tower to Cavern	1.40	1.40	1.10	1.10	1.50	1.62	1
eddare brop Main Piping tower to Gavern	1.40	1.40	1.10	1.10	1.00	1.92	
lacellaenaous					ļļ		ļ
lowance for Heat Exchngr pressure drop (Cavern) - ft	23	23	23	23	23	23	0
Iowance for Heat Exching: pressure drop (Cavern) - ft	23	23	23	23	23	23	
Iowance for Control Valves- ft - wag	30	30	30	30	30	30	
	30	30	30	30			
otal Drop for Miscellaneous	/0	/0	/0	/0	76	76	-
ubiotal Braco Bran							
ubtotal Press Drop	163	364	200	204	211	195	
lowance for fittings and safety factor 15% - wag	24	55	30	31	32	29	
otal (ft)	187	418	230	235	243	225	i 2
otal (psl)	81	181	99	102	105	97	
ctual Pump Selection- (2 pump runng, 1 stdby) (see attache	d selection)					120	
np @ Design Point each pump -tweat way & test @row35	167		185	190	176	120)
P each pump (Installed) (non-overloading)	167 200		225	225	200	150 150	
			LEU	LEV	22.0	100 100	
uantity Pump Running	10/ 2		2	2	2		2

Watt per watt information for water cooling plants

Plant	% Chilled Water	% LCW	Watt per Watt	
CUB (Central Cooling				
Plant at Fermilab)	60%	40%	0.24	Use Cooling Towers
				Use Pond Water (no fan
Tevatron- Fermilab	0%	100%	0.18	power)
				Use Pond Water (no fan
Main Injector	0%	100%		power)
Shaft 7 Water Plant	26%	74%	0.18	Use Cooling Towers

So current water plant design appear to be ok With regard to this.

- <u>Summary</u>
- Basic Water System Design is presented.
- Thermal Load still preliminary, still changing, may still be large and need to be checked, confirmed. (Cost Driver)
- Skid reduction (1skid to 4RF) and increase delta T (40F) can be pursued. Impact on BHP to be investigated. (*how about impact on water cooled components?*)
- Various Cost reduction scheme investigated and continuing (including skid cost)
- Watt (cooling power) per watt (heat load) for shaft 7 plant appear reasonable.
- Major Cost driver is still Skid, CHW and Large thermal load.
- Temperature analysis in next two weeks (also Tom and Lee's talk).