Charm Jet Identification Using Flavor Tagging

C. Milstene- Sept-19-06

In collaboration with:
A. Freitas(Zurich U.), A. Sopczak (Lancaster U.), M. Schmitt (Northwestern U.)

- The decay

$$
e^{+} e^{-} \rightarrow \tilde{t}_{1}{\overline{t_{1}}}_{1} \rightarrow c \tilde{\chi}_{0}^{1} \bar{c} \tilde{\chi}_{0}^{1}
$$ has been studied at the ILC in the Framework of (SUSY/MSSM) with the neutralino as a Dark Matter candidate.

M. Carena, A. Finch, A. Freitas, C. Milstene, H. Nowak, A. Sopczak, Phys. rev. D 72,115008(2005)
The stop mass has to be measured with high precision. The systematic uncertainty is the main factor limiting the precision and the stop fragmentation is an important player.

- The stop fragmentation transforms the 2 jets events into multijets events ($3-4$ jets). In this analysis, the Vertex Flavor Tagging plays a special role as a tool to Identify the 2 charm Jets

Simulation Characteristics

- Signal and Background generated with: Pythia + Simdet + Circe
- Beamstrahlung \& Bremstrahlung Pythia/ Simdet code implemented by A. Finch
- Hadronisation of the c quark and the stop from the Lund string fragmentation Pythia uses Peterson fragmentation
(Peterson et al PR D27:105)
- The stop fragmentation is simulated using Torbjorn code Thttp://www.thep.uu seforbion/pythia/main73.t.
The stop quark is set stable until after fragmentation where it is Allowed to decay again as described in (Kraan, EPJ C37:91)
- Signal and Background are generated in each channel in conjunction to the cross-sections:

The Signal \& Vertex Detector

Vertex Detector: Tesla type CCD layers @15,26,37,48 \& 60mm each layer 0.064\%X0

Background- Channels

hep-ph9701336-A.Bartl,H. Eberl,S. Kraml, W.Majerotto,W.Porod,A. Sopczak

Signal And Background Cross-Sections (pb)

Process	ECM	Cross-sections (pb)		
	500 GeV	$0 / 0$	$-80 \% /+60 \%$	$+80 \% /-60 \%$
$\dddot{\imath}_{1} \check{\imath}_{1}{ }^{*}$		0.118	0.072	0.276
	Pythia -ISub			
ww	25	8.60	24.5	0.77
Wenu	36	6.14	10.6	1.82
ZZ	22	0.49	1.02	0.44
eeZ	35	7.50	8.50	6.20
tt	1	0.55	1.13	0.50
qq*	1	13.10	25.40	14.90
2-photon		936		

The Events have been produced with
Beamstrahlung
A. Freitas et al EPJ C21(2001)361, EPJ C34(2004)487 And GRACE and COMPHEP

Selection
 $$
e^{+} e^{-} \rightarrow \tilde{t}_{1}{\overline{t_{1}}}_{1} \rightarrow c \tilde{\chi}_{0}^{1} \bar{c} \tilde{\chi}_{0}^{1}
$$

-A short list of the sequential cuts applied as a preselection first, allowed larger samples to be produced and the cut refined at selection stage.
Pre-selection:
-4<Number of Charged tracks<50
-Pt> 5 GeV

- $\cos \theta_{\text {Thrust }}<0.8$
- $\mathrm{P}_{\mathrm{l}, \text { tot }} / \mathrm{P} \mid<0.9$
- $\mathrm{E}_{\text {vis }}<380 \mathrm{GeV}$
-M(inv) $<200 \mathrm{GeV}$
Selection: Flavor Tagging -T. Kuhl
-Njets >=2 \&\& En <25 GeV; n=3,4
- $\mathrm{P}_{\mathrm{t}}>12 \mathrm{GeV}$
- T>0.8, $\cos \theta_{\text {Thrust }}<0.7$:
- $\mathrm{E}_{\text {vis }}<0.4 \sqrt{ } \mathrm{~s}$
-| Фасор| <0.9
- $60 \mathrm{GeV}<$ Minv $_{\text {jets }}<90 \mathrm{GeV}$

Charm tagging likelihood >0.4

Jet Multiplicity - Without/With Fragmentation

Stop fragmentation simulated using Torbjorn code
I/http://wwwthep.ü seforbjorn/pythia/mainjob
The stop fragmentation parameter is set relative
To the bottom fragmentation parameter $\tilde{\varepsilon} \mathrm{t}=\varepsilon _b^{*} m_{b}{ }^{2} / \tilde{m}^{2}$
And $\varepsilon _b=-0.0050+/-0.0015$
following (OPAL,EPJ C6:225)
-The jet Multiplicity without $\tilde{\mathfrak{t}}$ Fragmentation
Upper figure
~ 70\% 2 jets
-The jet Multiplicity with $\tilde{\mathrm{t}}$ Fragmentation
Lower Figure
~ 50\% 3 jets
\& bigger admixture of 4jets

Stop/wenu- Variables Distributions

Left column: Stop
Right column: wenu (main Bg)

Charm-tagging

C. Milsténe

The charm tagging provides the best cut between signal And wenu background \& will Be used here as a tool to find The charm jets

C-tagging-The Principle

A Vertex Identification followed by a Neural Network application
(ZVTOP) which operate on tracks within a jet

- Vertex Identification:

Is a maximum in track overlapping (product of probability density tubes defined using the track parameters and the Covariant matrix)

3 cases:
Case 1) Only a primary Vertex
Case 2) 1 secondary vertex
Case 3) >1 secondary vertex

Probability Tubes \& Overlap Into a Vertex

ZVTOP - probabilty tubes

W. Wolkowiak: NIM A388-247-153, 1997

1/ The probability tubes are shown
2/ The vertex significance is determined by the overlap of the probability tubes
3/ At $1^{\text {st }}$ a 2 tracks vertex is formed by the overlap of their probability tube
W. Wolkowiak

Vertex Finding

W. Wolkowiak

1/ Tracks are assigned to the vertex According to the vertex significance 2/ Vertices which are not resolved Are merged

C-Tagging - The Data Samples

- Neural Network (NN):
data used: 255000 stops, Mstop=120-220; $D m=5,10,20$ GeV

240000 Wev , the most resilient background

C-tagging-Neural Network Input

- Vertex Case 1:NN Input variables
- Impact parameter significance (impact parameter/error) of the 2 most significant tracks in the r-Ф plane (highest separation power) \&\& their Impact parameters.
- The impact parameter significance \& Impact parameters of the 2 tracks in z
- Their momenta
- The joint probability in r - Φ (tiny beamspot size in that plane)\& z
- Vertex Case 2: NN Input variables (all of Case 1+below)
- Decay Length significance of the secondary vertex \&\& Decay Length
- Momentum of all tracks associated to the secondary vertex \&\& Multiplicity
- Pt corrected mass of secondary vertex (corrected for neutral hadrons\&v's), the pt of the decay products perpendicular to the flight direction (between primary \&\& secondary Vertex) \&\& joint probability in r-Ф and z
-Vertex Case 3: 2 secondary vertices, the tracks are assigned to the vertex closest to the primary vertex and the NN input variables are those of case 2

Selection: The Background Rejection

Table 1
Luminosity $500 \mathrm{fb}^{\wedge}-1, \mathrm{Ecm}=500 \mathrm{GeV}$. Table 1 the number of events after selection are given with and without polarization, Table 2 and in red Table 1 comes from our previous study in Phys. rev. D $72,115008(2005)$, same efficiency for similar (Mit1, $\Delta \mathrm{m}$). And we have now $\mathrm{Mt} 1=122.5+/-1.2 \mathrm{GeV}$ Instead of Mĩ1 $=122.5+/-1 \mathrm{GeV}$.
C. Milsténe

Conclusions / Outlook

- 1/ When assuming a longer live stop hadron which fragments the

2-jets process becomes mostly a 3-4 jets final state with a residual
10\% 2 jets events

- 2/ The 2 charm jets are now split into 3 or 4 jets events. (might be of interest for other physics channel changing the signature expected)
- 3/ The C-tagging has successfully been used as an active tool to Identify the charm jets in the 3-4 jets events
- 4/ The same overall signal efficiency is achieved with and without assuming stop fragmentation.
- 5/ Effect of Removing of $1^{\text {st }}$ layer (radiation damage) increase in layer density (element support) and their effect on the c_tagging : efficiency and purity SNOWMASS-2005-ALCPG1431,Dec2005,5pp and is now under study with fragmenting stops (in progress)
- 6/ Next bigger projects for Vertex Studies:
- full simulation
- Going to a detector independent frame
- Varying (vertex) Detectors

Backup

Background ()

- Remark:

In the Beamstrahlung are included processes
131,135,11,12,13,28,53,68
In the Bremstrhalung
$11,12,13,28,53,68,131,132,135,136,137,138,139,140 \ldots$

c-Tagging- Purity Versus Efficiency 4 Vertices configurations without Fragmentation

\author{

- VX_{12}; 5 Layers, Single Density - $\mathrm{VX} \mathrm{X}_{22}$; 4 Layers, Single Density
 - VX_{32}; 5 Layers; Double Density
 - VX_{42}; 4 Layers; Double Density
 $R_{\text {Layer }}=15,26,37,48,60 \mathrm{~mm}$
 $E_{\mathrm{cm}}=500 \mathrm{GeV}$
 Luminosity $=500 \mathrm{fb}^{-1}$
 Signal:
 $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \tilde{\mathrm{t}} \tilde{\mathrm{t}} \rightarrow \mathrm{c} \mathrm{X}_{0}{ }^{1} \mathrm{c} \mathrm{X}_{0}{ }^{1}$
 $\mathrm{mt}=120 \mathrm{GeV}$
 $m X 01=110 \mathrm{GeV} ; \mathrm{dm}=10 \mathrm{GeV}$
 Main Background:
 Wev
}

Multiple Scattering

e.g.

For a 0.5 GeV particle
In Layer 1,R=15mm
$\mathrm{d}=\mathrm{R} \theta=15 \mu \mathrm{~m}$
$\Theta=(13.6 / p) \sqrt{ }(x / X 0)$
X0=radiation Length
Theta =Multiple Scattering angle

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.

