Calorimeter Studies

Tim Barklow SLAC September 19, 2006 Error on $BR(H \rightarrow WW^*)$ from measurement of

 $e^+e^- \rightarrow ZH \rightarrow q\overline{q}WW^* \rightarrow q\overline{q}q\overline{q}lv$ at $\sqrt{s} = 360$ GeV, L=500 fb⁻¹ J.-C. Brient, LC-PHSM-2004-001

 $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 W^+ W^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 qqqq$

Due to W mass the energy spectrum doesn't shift to left or right as in slepton case but instead get wider or narrower \Rightarrow all energies contribute to mass meas.

842386

73822

103.9

14.61

180

$$e^{+}e^{-} \rightarrow \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-} \rightarrow \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}W^{+}W^{-} \rightarrow \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}qqqq$$

$$M_{\tilde{\chi}_{1}^{+}} = 199.4 \text{ GeV}$$

$$M_{\tilde{\chi}_{1}^{0}} = 106.2 \text{ GeV}$$

$$e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 W^+ W^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 qqqq$$

SUSY study in jet mode by Miyamoto

Standard Model:
$$M_{H}^{2} = 2\lambda v^{2} = -2\mu^{2}$$

 $\frac{1}{\sqrt{s}}$ $e^+e^- \rightarrow ZHH \rightarrow q\bar{q}b\bar{b}b\bar{b}$ $\sqrt{s} = 500 \text{ GeV}, \text{ L}=1000 \text{ fb}^{-1}$ $\Delta E/\sqrt{E} = 60\% \rightarrow 30\%$ equiv to $4 \times \text{ Lumi}$ C. Castanier et al. hep-ex/0101028

Jet Energy Resolution Conclusions

- Most studies indicate an effective luminosity gain of 40% as the jet energy resolution is improved from 60% to 30% over sqrt(E).
- There is one study which shows an effective luminosity gain of a factor of 4 as the jet energy resolution is improved from 60% to 30%, but another study of the same process indicates a much smaller dependence on jet energy resolution. It is clearly important to reconcile these two results –we're getting close.
- More physics studies involving direct W and Z production are required before conclusions can be drawn regarding required calorimeter performace.