Beam-gas scattering & detector background

T. Maruyama (SLAC)

Beam-gas scattering in Geant 3

- Few years ago beam-gas scattering in the BDS was simulated in Geant and compared with Keller's TURTLE results.
 - Consistent within a factor of two.
- In Geant the beam line vacuum is replaced by a mixture of 62%H₂+ 22%CO+16%CO₂ at a pressure of 4.9x10⁻³ atm
 - $X_0 = 1500 \text{ m} \times 100$
- Sync radiation masks (FD protection collimators) at 50 m and 13 m take most of the beam-gas scatterings.
- Detector background

Beam-gas scattering rate at 10 nTorr

	100,000 incident	Two beams with 2x10 ¹⁰ e-/BX at 10 nTorr
50 m Mask (x > 0.78 cm, y > 0.4 cm)	1673	1.8
13 m Mask (x > 0.74 cm, y > 0.45 cm)	204	0.22
From QF1 to QD0	13	0.014
R > 1 cm at z = 350 cm	37	0.040

Detector background from beam-gas scattered particles hitting the mask at 13 m

SiD Detector with 14 mrad crossing angle

Central detector is well protected.

Negligible detector background would be generated unless particles hit the mask edge within ~10 um.

Detector background from 250 GeV e- hitting the 13m mask

VXD hits from pairs ~300/BX

Photons from pairs ~1000/BX

Conclusions

- Protection Collimators at 13 m and 50 m would take most of beam-gas scattered particles.
 - 1.8 hits/BX at 50 m @10 nTorr
 - 0.22 hits/BX at 13 m @ 10 nTorr
- Detector background from particles hitting the 13m mask was estimated.
- To be comparable with the pairs background,
 ~100 particles must hit the mask edge within 10 um.