## Errors in 2D beam emittance measurement in FODO channel

Purpose: minimization of errors in beam emittance measurements through beam profile measurements

## 1. Intro

4D beam is described by $\vec{\sigma}$ - matrix: $\quad \vec{\sigma}=\left|\begin{array}{llll}\sigma_{11} & \sigma_{12} & \sigma_{13} & \sigma_{14} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} & \sigma_{24} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} & \sigma_{34} \\ \sigma_{41} & \sigma_{42} & \sigma_{43} & \sigma_{44}\end{array}\right|$
Matrix (1-1) is symmetric, $\sigma_{\mathrm{ij}}=\sigma_{\mathrm{ji}}$, so only 10 elements of matrix are independent. Measurements are provided for beam sizes

$$
\begin{equation*}
<x^{2}>=\sigma_{11},<y^{2}>=\sigma_{33},<x y>=\sigma_{13} \tag{1-2}
\end{equation*}
$$

at different locations. Explicit transformation for $\sigma_{11}, \sigma_{33}, \sigma_{13}$ is:
$\sigma_{11}$
$\sigma_{33}$
$\sigma_{13}$$\left|=\left|\begin{array}{ccccccccc}R_{11}^{2} & 2 R_{11} R_{12} & 2 R_{11} R_{13} & 2 R_{11} R_{14} & R_{12}^{2} & 2 R_{12} R_{13} & 2 R_{12} R_{14} & R_{13}^{2} & 2 R_{13} R_{14} \\ R_{31}^{2} & 2 R_{31} R_{32} & 2 R_{31} R_{33} & 2 R_{31} R_{34} & R_{32}^{2} & 2 R_{32} R_{33} & 2 R_{34} R_{32} & R_{33}^{2} & 2 R_{33} R_{34} \\ R_{11} R_{31} & R_{12} R_{31}+R_{11} R_{32} & R_{13} R_{31}+R_{11} R_{33} & R_{31} R_{14}+R_{11} R_{34} & R_{12} R_{32} & R_{13} R_{32}+R_{12} R_{33} & R_{32} R_{14}+R_{12} R_{34} R_{13} R_{33} R_{14} R_{33}+R_{13} R_{34} & R_{14} R_{34}\end{array}\right|\right| \begin{array}{ll}\sigma_{111} \\ \sigma_{12} \\ \sigma_{13} \\ \sigma_{14} \\ \sigma_{22} \\ \sigma_{23} \\ \sigma_{24} \\ \sigma_{33} & \\ \sigma_{34} & \\ \sigma_{44} & 0(1-3)\end{array}$

To determine 10 independent values of $\sigma$-matrix, we need $3 \times 3+1=10$ equations from at least 4 independent measurement stations. To be physically correct, the following conditions for matrix elements have to be fulfilled (for details see BDS meeting note of YB, 09/12/2006):

$$
\sigma_{i i}>0, \quad\left|\begin{array}{cc}
\sigma_{i i} & \sigma_{i j}  \tag{1-4}\\
\sigma_{i j} & \sigma_{j j}
\end{array}\right|>0, \quad i=1,2,3,4 ; \quad j>i
$$

Complete analysis of errors in 4D beam emittance measurements requires solution of $10 \times 10$ linear system with variable parameters. In this note we consider errors in 2D beam emittance measurements (uncoupled beam), where beam at each plane ( $\mathrm{x}-\mathrm{x}$ '), ( $\mathrm{y}-$ $y^{\prime}$ ) is determined by 3 parameters $\alpha$, $\beta$, Э. Special case of 2D beam with $\alpha=0$ was considered in BDS meeting note of YB, 10/24/2006.

## 2. Errors in 2D beam emittance measurement

Consider 2D beam emittance measurement problem for the beam propagating in FODO channel. Single particle transformation matrix

$$
\left.\left|\begin{array}{l}
\mathrm{x}  \tag{2-1}\\
\mathrm{X}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
\mathrm{C} & \mathrm{~S} \\
\mathrm{C}^{\prime} & \mathrm{S}^{\prime}
\end{array}\right| \begin{gathered}
\mathrm{x}_{0} \\
\mathrm{x}^{\prime}{ }^{\prime}
\end{gathered} \right\rvert\,
$$

Beam ellipse transformation:

$$
\left.\left|\begin{array}{c}
\beta  \tag{2-2}\\
\alpha \\
\gamma
\end{array}\right|=\left|\begin{array}{ccc}
C^{2} & -2 C S & S^{2} \\
-C^{\prime} & C^{\prime}+S C^{\prime} & -S S^{\prime} \\
C^{\prime 2} & -2 C^{\prime} S^{\prime} & S^{\prime 2}
\end{array}\right| \begin{gathered}
\beta_{0} \\
\alpha_{0} \\
\gamma_{0}
\end{gathered} \right\rvert\,
$$

As far as $\beta \ni=\mathrm{R}^{2}$, where R is the beam size and $\ni$ is the beam emittance, equation for unknown beam parameters $\alpha_{0}, \beta_{0}, \gamma_{0}$, is

$$
\left|\begin{array}{l}
R_{1}^{2}  \tag{2-3}\\
R_{2}^{2} \\
R_{3}^{2}
\end{array}\right|=\left|\begin{array}{lll}
C_{1}^{2} & -2 C_{1} S_{1} & S_{1}^{2} \\
C_{2}^{2} & -2 C_{2} S_{2} & S_{2}^{2} \\
C_{3}^{2} & -2 C_{3} S_{3} & S_{3}^{2}
\end{array}\right|\left|\begin{array}{c}
\beta_{\mathrm{O}^{\ni}} \\
\alpha_{\mathrm{O}^{\ni}} \\
\gamma_{\mathrm{O}^{\ni}}
\end{array}\right|
$$

Solution of Eq. (2-3) is

$$
\begin{align*}
& \alpha_{0} \ni=\frac{\mathrm{C}_{3}^{2}\left(\mathrm{R}_{2}^{2} S_{1}^{2}-\mathrm{R}_{1}^{2} \mathrm{~S}_{2}^{2}\right)+\mathrm{C}_{1}^{2}\left(\mathrm{R}_{3}^{2} \mathrm{~S}_{2}^{2}-\mathrm{R}_{2}^{2} \mathrm{~S}_{3}^{2}\right)+\mathrm{C}_{2}^{2}\left(\mathrm{R}_{1}^{2} \mathrm{~S}_{3}^{2}-\mathrm{R}_{3}^{2} \mathrm{~S}_{1}^{2}\right)}{2\left(\mathrm{C}_{2} \mathrm{~S}_{1}-\mathrm{C}_{1} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{3} \mathrm{~S}_{1}-\mathrm{C}_{1} \mathrm{~S}_{3}\right)\left(\mathrm{C}_{2} \mathrm{~S}_{3}-\mathrm{C}_{3} \mathrm{~S}_{2}\right)} \\
& \beta_{\mathrm{O}} \ni=\frac{-\mathrm{R}_{3}^{2} \mathrm{~S}_{1} \mathrm{~S}_{2}\left(\mathrm{C}_{2} \mathrm{~S}_{1}-\mathrm{C}_{1} \mathrm{~S}_{2}\right)+\mathrm{C}_{3} \mathrm{~S}_{3}\left(\mathrm{R}_{2}^{2} \mathrm{~S}_{1}^{2}-\mathrm{R}_{1}^{2} \mathrm{~S}_{2}^{2}\right)-\mathrm{S}_{3}^{2}\left(\mathrm{C}_{1} \mathrm{~S}_{1} \mathrm{R}_{2}^{2}-\mathrm{C}_{2} \mathrm{~S}_{2} R_{1}^{2}\right)}{\left(\mathrm{C}_{2} \mathrm{~S}_{1}-\mathrm{C}_{1} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{3} \mathrm{~S}_{1}-\mathrm{C}_{1} \mathrm{~S}_{3}\right)\left(\mathrm{C}_{2} \mathrm{~S}_{3}-\mathrm{C}_{3} \mathrm{~S}_{2}\right)} \tag{2-5}
\end{align*}
$$

$$
\gamma_{\mathrm{O}^{\ni}}=\frac{\mathrm{R}_{1}^{2} \mathrm{C}_{2} \mathrm{~S}_{3}\left(\mathrm{C}_{2} \mathrm{~S}_{3}-\mathrm{C}_{3} \mathrm{~S}_{2}\right)+\mathrm{C}_{1} \mathrm{~S}_{1}\left(\mathrm{R}_{2}^{2} \mathrm{C}_{3}^{2}-\mathrm{R}_{3}^{2} \mathrm{C}_{2}^{2}\right)+\mathrm{C}_{1}^{2}\left(\mathrm{C}_{2} \mathrm{~S}_{2} R_{3}^{2}-\mathrm{C}_{3} \mathrm{~S}_{3} R_{2}^{2}\right)}{\left(\mathrm{C}_{2} S_{1}-\mathrm{C}_{1} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{3} \mathrm{~S}_{1}-\mathrm{C}_{1} \mathrm{~S}_{3}\right)\left(\mathrm{C}_{2} \mathrm{~S}_{3}-\mathrm{C}_{3} \mathrm{~S}_{2}\right)}
$$

Beam emittance

$$
\begin{equation*}
\ni=\sqrt{\left(\beta_{0} \ni\right)\left(\gamma_{0} \ni\right)-\left(\alpha_{0} \ni\right)^{2}} \tag{2-7}
\end{equation*}
$$

$$
\begin{align*}
& \text { Error in beam remittance } \\
& \frac{d \ni}{\ni}=-\left\{2\left(C_{2} S_{1}-C_{1} S_{2}\right)^{2}\left(C_{3} S_{1}-C_{1} S_{3}\right)^{2}\left(C_{3} S_{2}-C_{2} S_{3}\right)^{2}\right. \\
& {\left[-\frac{\left(C_{1}^{2} R_{2}^{2}-C_{2}^{2} R_{1}^{2}\right)\left(C_{1}^{2} R_{2}^{2} \frac{d R_{2}}{R_{2}}-C_{2}^{2} R_{1}^{2} \frac{\mathrm{dR}_{1}}{R_{1}}\right)}{C_{1}^{2} C_{2}^{2}\left(C_{2} S_{1}-C_{1} S_{2}\right)^{2}}-\right.} \\
& -\frac{\left(C_{1}^{2} R_{3}^{2}-C_{3}^{2} R_{1}^{2}\right)\left(C_{1}^{2} R_{3}^{2} \frac{d R_{3}}{R_{3}}-C_{3}^{2} R_{1}^{2} \frac{d R_{1}}{R_{1}}\right)}{C_{1}^{2} C_{3}^{2}\left(C_{3} S_{1}-C_{1} S_{3}\right)^{2}}+ \\
& +\frac{\left(C_{2}^{2} R_{3}^{2}-C_{3}^{2} R_{2}^{2}\right)\left(C_{2}^{2} R_{3}^{2} \frac{d R_{3}}{R_{3}}-C_{3}^{2} R_{2}^{2} \frac{\mathrm{dR}_{2}}{R_{2}}\right)}{C_{2}^{2} C_{3}^{2}\left(C_{3} S_{2}-C_{2} S_{3}\right)^{2}}+  \tag{2-8}\\
& +\frac{2 C_{2}\left(C_{3}^{4} R_{1}^{4} \frac{d R_{1}}{R_{1}}-C_{1}^{4} R_{3}^{4} \frac{\mathrm{dR}_{3}}{R_{3}}\right)}{C_{1}^{2} C_{3}^{3}\left(C_{2} S_{1}-C_{1} S_{2}\right)\left(C_{3} S_{1}-C_{1} S_{3}\right)}+ \\
& { }_{2} \mathrm{C}_{1}\left(\mathrm{C}_{3}^{4} \mathrm{R}_{2} \frac{\mathrm{dR}}{\mathrm{R}_{2}}-\mathrm{C}_{2}^{4} \mathrm{R}_{3}^{4} \frac{\mathrm{dR}_{3}}{\mathrm{R}_{3}}\right) \\
& \left.\mathrm{C}_{2}^{2} \mathrm{C}_{3} \mathrm{C}_{3}\left(\mathrm{C}_{2} \mathrm{~S}_{1}-\mathrm{C}_{1} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{3} \mathrm{~S}_{3}-\mathrm{C}_{3} \mathrm{~S}_{2}\right) \mathrm{l}\right\} / \mathrm{D}
\end{align*}
$$

Denominator:

$$
\begin{equation*}
\mathrm{D}=\mathrm{G}^{4}\left[\left(\frac{\mathrm{~A}+\mathrm{B}}{\mathrm{G}}\right)^{2}-1\right]\left[\left(\frac{-\mathrm{A}+\mathrm{B}}{\mathrm{G}}\right)^{2}-1\right] \tag{2-9}
\end{equation*}
$$

$$
\begin{align*}
& \hline \mathrm{A}=\mathrm{R}_{1}\left(\mathrm{C}_{2} \mathrm{~S}_{3}-\mathrm{C}_{3} \mathrm{~S}_{2}\right)  \tag{2-10}\\
& \hline \mathrm{B}=\mathrm{R}_{2}\left(\mathrm{C}_{3} \mathrm{~S}_{1}-\mathrm{C}_{1} \mathrm{~S}_{3}\right)  \tag{2-11}\\
&  \tag{2-12}\\
& \mathrm{G}=\mathrm{R}_{3}\left(\mathrm{C}_{2} \mathrm{~S}_{1}-\mathrm{C}_{1} \mathrm{~S}_{2}\right) \\
& \hline
\end{align*}
$$

Large error in beam emittance is expected if

$$
\begin{equation*}
\mathrm{a}=\frac{\mathrm{A}+\mathrm{B}}{\mathrm{G}} \approx 1 \quad \text { or } \quad \mathrm{b}=\frac{\mathrm{B}-\mathrm{A}}{\mathrm{G}} \approx 1 \tag{2-13}
\end{equation*}
$$

Consider $90^{\circ}$ phase advance FODO channel:



Single particle trajectory


Matrix parameters and $\beta$-function of the structure.

Example1: Stable beam emittance measurement


$$
\begin{gathered}
\mathrm{C} 1=-0.428950 \\
\mathrm{~S} 1=3.87470 \\
\mathrm{C} 2=-2.44000 \\
\mathrm{~S} 2=11.7880 \\
\mathrm{R} 1=1.61200 \\
\mathrm{R} 2=3.86000 \\
\mathrm{C} 3=-1.01256 \\
\mathrm{~S} 3=3.08830 \\
\mathrm{R} 3=1.61200 \\
\mathrm{a}=0.17 \\
\mathrm{~b}=5.78 \\
\mathrm{Ro}=3.07 \\
\ni=1 \\
\alpha=-1.8
\end{gathered}
$$






Determination of beam parameters $\ni, R_{0}, \alpha$ for error in beam sizes $R_{1}, R_{2}, R=0$.

Variation of measured beam sizes:

$$
\mathrm{R}_{1}=\mathrm{R}_{1}^{(0)}(1+\mathrm{f})
$$

$$
\mathrm{R}_{2}=\mathrm{R}_{2}^{(0)}(1+\mathrm{g})
$$

$$
\mathrm{R}_{3}=\mathrm{R}_{3}^{(0)}(1+\mathrm{h})
$$

where $R_{1}^{(0)}, R_{2}^{(0)}, R_{3}^{(0)}$ - unperturbed values of measured beam sizes, $\mathrm{f}, \mathrm{g}, \mathrm{h}$ - generators of random numbers uniformly distributed within interval [-a, a] Values of $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ are distributed with

$$
\sigma=\frac{\mathrm{a}}{\sqrt{3}}
$$



R1 R2



Determination of beam parameters with errors in beam sizes $R_{1}, R_{2}, R_{3}= \pm 5 \%\left(\sigma_{R} / R=2.88 \%\right)$. Error in measured value of beam emittance is approximately $\pm 10 \%\left(\sigma_{\ni} / \ni=4.3 \%\right)$.

Example 2: Stable beam emittance measurements (phase shift $45^{\circ}, 90^{\circ}, 135^{\circ}$ )


$$
\begin{aligned}
\mathrm{C} 1 & =0.295340 \\
\mathrm{~S} 1 & =4.40000 \\
\mathrm{C} 2 & =0.000000 \\
\mathrm{~S} 2 & =14.9000 \\
\mathrm{R} 1 & =1.70000 \\
\mathrm{R} 2 & =3.86000 \\
\mathrm{C} 3 & =-0.295340 \\
\mathrm{~S} 3 & =4.40000 \\
\mathrm{R} 3 & =1.61200 \\
\mathrm{a} & =0.17 \\
\mathrm{~b} & =5.28 \\
\mathrm{Ro} & =3.86 \\
\ni & =1 \\
\alpha & =0
\end{aligned}
$$






Determination of beam parameters $\ni, R_{0}, \alpha$ with error in beam sizes $R_{1}, R_{2}, R_{3}=0$.


Determination of beam parameters with errors in beam sizes $R_{1}, R_{2}, R_{3}= \pm 5 \%\left(\sigma_{R} / R=2.88 \%\right)$. Error in measured value of beam emittance $\approx \pm 10 \%\left(\sigma_{\ni} / \ni=4.29 \%\right)$.

Example 3: Unstable beam emittance measurements ( $45^{\circ}, 90^{\circ}, 225^{\circ}$ )



Determination of beam parameters $\ni, R_{0}, \alpha$ with error in beam sizes $R_{1}, R_{2}, R_{3}=0$.

Yuri Batygin 2006/12/05




Unstable determination of beam parameters with errors in beam sizes $R_{1}, R_{2}, R_{3}= \pm 5 \%$.

## 3. Summary

1. Error in determination of beam emittance is larger than error in measured beam sizes.
2. Determination of emittance through beam size measurements at different locations
$R_{1}, R_{2} R_{3}$ is performed with significant error if the following conditions are fulfilled:

$$
\mathrm{A}=\mathrm{R}_{1}\left(\mathrm{C}_{2} \mathrm{~S}_{3}-\mathrm{C}_{3} \mathrm{~S}_{2}\right)
$$

$$
\mathrm{B}=\mathrm{R}_{2}\left(\mathrm{C}_{3} \mathrm{~S}_{1}-\mathrm{C}_{1} \mathrm{~S}_{3}\right)
$$

$$
\mathrm{G}=\mathrm{R}_{3}\left(\mathrm{C}_{2} \mathrm{~S}_{1}-\mathrm{C}_{1} \mathrm{~S}_{2}\right)
$$

$$
\mathrm{a}=\frac{\mathrm{A}+\mathrm{B}}{\mathrm{G}} \approx 1 \quad \text { or } \quad \mathrm{b}=\frac{\mathrm{B}-\mathrm{A}}{\mathrm{G}} \approx 1
$$

where $S_{1}, S_{2}, S_{3}, C_{1}, C_{2}, C_{3}$ are single particle matrix transformation elements.
3. Next step: error analysis for 4D beam.

