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rr” identification in a strip calorimeter

(1r” y—y pairing in Z0 events)



r° finding

* significant fraction of neutral energy in jets are Y from 77"

* 1in PFA, neutral energy contributes most to the energy

resolution

* hope to identify pairs of Y from 7r°, perform kinematic

fit, improve energy estimate



GLD strip calorimeter

* GLD baseline calorimeter has scintillator strips
— 1x5 cm, perpendicular orientation in adjacent layers

* hope that a smart algorithm can get almost I1x1cm
“effective granularity”

* how long can the strips be?
* study in single 7r° and single 'y events

— how well can these be distinguished?



T’ -> Yy opening angle

separation of photons at front face of EM calorimeter (210cm)
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strip clustering

* 2 photons maybe resolved 1n only one strip
“polarity”™

* resolve as much information about shower shape
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strip clustering algorithm

* first nearest-neighbor clustering in each layer.
® Jook for substructure in clusters,

— recluster with higher energy threshold

* gplit if reclustering gives > 1 cluster

— assign below threshold strips to closest cluster

energy deposit

strip in layer






* look for neighboring clusters in the layers above and below

— since these have different orientations, it's easy to be a neighbor



* look for neighboring clusters in the layers above and below

— since these have different orientations, it's easy to be a neighbor

* if “above” and “below” are also each others' neighbors, make “triplet”

— this 1s more stringent: “above” & “below’ have same orientation



* 1if a cluster 1s central member of >1 triplet, split it cell-by-cell



* 1if a cluster i1s central member of >1 triplet, split it cell-by-cell

* define “overlap-quality” of triplet

— energy-overlap of its clusters
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calorimeter “tracking”

o
* 1ideally want to reconstruct as much N

/ detail about shower as possible
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have 2 clusters in common, starting ~—S&
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at inside of calorimeter, working out
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® 1in case of ambiguities, use triplet
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T~y separation

* can we distinguish 7° from y?

* look at cases where separation 1s non-
trivial: stmple nearest neighbor
clustering finds a single cluster

* look for cases where there are two
“motherless tracks” early in the
cluster development

increasing layer



events displays: same 10 GeV 1’ event

present clustering

Ixlcm I x1cm 1 Xx5cm 1 x10cm

different colors = different reconstructed clusters or tracks



distinguish 1r°-photon
* look at 10 GeV photons, t° (y—y separation ~ 6¢m)

* look at strip lengths 1 — 20cm, different widths

* plot # “motherless tracks” starting in first 2 calorimeter layers

v: 1 track
% often 2 tracks

larger strips, more
difficult to resolve 7
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efficiency for resolving >=2 early motherless tracks in 77",
prob of splitting a y into >=2 early motherless tracks
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algorithm with longer strips tends to split y
longer strips give somewhat worse 7t identification; dependence not so strong



strip clustering summary & plans

* developing algorithm to identify 1° in strip
calorimeter

— preliminary results on strip length dependence

— needs some more understanding
* try with 7r° in jets

* apply algorithm to hadrons; plug into (GLD) PFA



O . .
1t finding
significant fraction of neutral energy 1n jets are gamma

from 11’

in PFA, neutral energy contributes most to the energy
resolution

hope to identify pairs of gamma from 7r°, perform
kinematic fit, improve energy estimate

study in fully simulated hadronic Z° decays @ 91 GeV

calorimeter segmented 1into 1x1cm scintillator cells
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r° finding in Z->uds jets

with respect to generic photon pairs, ¥ from 1’ have:

- invariant mass consistent with 7t mass s
— consistent with decay of spin-0 particle =

compare distributions for all y—y combinations

and those from real v’ decay
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combining identitied photons

* many photons per jet, also a number of fake photons
* only mass information 1s useful for identifying those from pi0
- use “mr’ pull” = (m_Yyy-m_17"))/sigma(m_YyY)
— use expected error on energy; ignore angular uncert. for now

* model this as a Gaussian for true 1’ pairs, Exponential for others

* define Likelihood Ratio Ls/Lb as function of “mass pull”
all reconstructed photons (including fakes)
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combining photons

* consider all possible pairs of identified photons with

I“mass pull”’l<3, order in Ls/Lb

* Starting with the best pair, assign to 71°s

= all_massPuli
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efficiency for true 1" quite good: true selected rr'/all true 7° ~ 68%
however purity is low: true selected 1r'/all selected ~ 33%



energy distribution

* the energy of wrong combinations tends to be lower that true 7’
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tried rather simple strategy to increase priority of high energy pairs,
no significant improvement in purity
try more sophisticated approach



photon pairing summary

T’ -> photons combinations:

get most of the correct 1r’->Yy pairings ~68%
but also many false ones (purity ~ 33%)

attempt better use of energy information
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twotrack efficiency
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