
1

 RAVE for the ILC community
- first results

Wolfgang Waltenberger, Bernhard Pflugfelder
Institute for High Energy Physics of the Austrian

Academy of Sciences

Hamburg, May/June 2007



2

Input data

Input data are due to Ben Jeffrey, big thanks!
~10000 Zh120  di-jet events. All flavors. L3 format.
Standard track reconstruction.



3

Track parameters: d0

Converted to “euclidean” 
Rave coordinates, then to 
“curvilinear” coordinates! 
Good check for conversion!

“pulls”: N(0.006, 1.25) good!

Resolutions:
σ ~ 10 μm (“core”)
σ ~ 60 μm (“tail”)



4

Track parameters: z0

“pulls”: N(0.005, 1.24) good!

Resolutions:
σ ~ 10 μm (“core”)
σ ~ 60 μm (“tail”)

Same picture!



5

Track parameters: θ

“pulls”: N(0.004, 1.24) good!

Resolutions: σ ~ 1.2 mrad

FIXME definition of 
theta ... tan lambda?



6

Track parameters: z0

“pulls”: N(0.005, 1.24) good!

Resolutions:
σ ~ 10 μm (“core”)
σ ~ 60 μm (“tail”)

Same picture!



7

Track parameters: p-1

“pulls”: N(0.002, 1.276)



8

Summary input data

All track parameter errors seem to be underestimated but 
acceptable.

It is considered an asset of the adaptive (vertex) fitting 
methods to be able to deal with imperfect data.



9

Fitting the intersection point

An adaptive vertex fitter has been used to fit the primary
vertices (“intersection points”) of the di-jet events.
No preselection on the tracks applied!
Can be used to determine beamspot.

Fitted primary vertex, magnified x20.
(A charmed event, and yet so many primary tracks?) D0



10

Fitting the intersection point

Resolution in z: 6~7 μm (if we ignore the b- and
c-jettish events)



11

Fitting the intersection point

“Pulls” of z-coordinate: N(-0.02, 1.27).
Very similar to tracks' pulls.



12

Java and Cygwin
Rave now also runs as a Java library, and under cygwin.

Same events, same code, but run as an org.lcsim-Driver -
slightly (but only slightly) different results?!

JavaRave!
org.lcsim-
Driver!



13

Java and Cygwin
Rave now also runs as a Java library.
It also compiles under cygwin.

Again, tiny differences!

Run as a 
MarlinProcessor!



14

Fitting the intersection point

Primary vertices can be 
reconstructed without prior 
track selection, without extra 
information, with ≈15ms per 
event (Intel Xeon 3GHz, 
512kb Cache)
(should be faster – overhead
due to conversions? L2 Cache?)resolution pulls, pulls,

bias
x 7 0.04 1.3
y 7 0.01 1.3
z 7 -0.01 1.3

[μm]  σ



15

Secondary vertices

Sample charmed di-jet event.
All vertices (cyan,red) reconstructed with
iterative adaptive method (avr).
vertices magnified x20.



16

Secondary vertex finding

First attempts have been made to run an iterative adaptive
vertex reconstructor (avr) on the dijets to find and fit
the primary vertex as well as all secondary vertices.
Algorithm has been run on the events, not on the individual 
jets! Again, no prior selection, algorithm has been run
“out of the box”.
Reconstructed vertices have been associated with
simulated vertex, if > 50 % of the tracks are “in common”.



17

Vertex finding efficiencies

Absolute numbers not very meaningful – can only be used
to qualitatively compare algorithms.



18

B­Tagging

- The standard Rave b-tagger has been tried.
Simple likelihood-ratio method, code for B and D tagging 
exists, but has not been used yet.
- Jet flavor: TrueAngularJetFlavourProcessor
- Tagging variables are track-, vertex-, and jet-based.
“Vanilla” AdaptiveVertexReconstructor used for vertex 
finding/fitting.
- Training sample: Ben Jeffrey's 10000 events. (Way too small 
for calibration).
- Fancier methods will follow: neural nets, boosted decision 
trees, genetic algorithms, etc.



19

Tagging Variables
PDFs of some tagging variables:

“No vertex
found” means it's 
probably a light 
jet



20

Tagging Variables
“Mass at vertex” - too few events! (Will try with kernel 
estimator)



21

Discriminator

charmed
Bs

light flavors

!!!Test sample was part of training sample!!!



22

B­tagging

50 % btag efficiency
would result in 1% of
non-bjets tagged as “B”

35 % btag efficiency
would result in 2 per 
mille of non-bjets 
tagged as “B” in these 
events.

!!!Test sample was part of training sample!!!



23

Caveat

B-Tagging results should not yet be taken too seriously:
- too small, too special training sample
- test sample was part of training sample!!!
- algorithms used out-of-the-box
etc.

Will need big event samples (where from?)



24

Conclusion
Rave has successfully been tried on ILC data for vertex
finding, vertex fitting, and b-tagging.
Very decent, acceptable first results.
But of course, many, many things can still be improved.

Future developments:
- Turn B-Tagger into Flavor-Tagger
- Compare iterative AdaptiveVertexReconstructor with other 
methods (Zvres etc.)  -> code exists already!
- Try fancier learning algorithms -> code exists already!
- Marlin processor exists, but currently exposes only vertexing
capabilities. Org.lcsim Driver exists, also.



25

References
- [CMS Note 2007/008] "Adaptive Vertex Fitting"  
http://cmsdoc.cern.ch/doc/notes/docs/NOTE2007_008

- "Adaptive Multi-Vertex Fitting", CMS CR-2004/062, 
http://cmsdoc.cern.ch/documents/04/cr04_062.pdf, CHEP proceedings 
Interlaken

- RAVE: http://projects.hepforge.org/rave/trac/wiki

- MarlinRave: Glue code for Marlin 
http://stop.itp.tuwien.ac.at/websvn/listing.php?repname=marlinrave

- org.lcsim Rave: Glue code for org.lcsim
http://stop.itp.tuwien.ac.at/websvn/listing.php?repname=lcsimrave

http://cmsdoc.cern.ch/doc/notes/docs/NOTE2007_008
http://projects.hepforge.org/rave/trac/wiki
http://stop.itp.tuwien.ac.at/websvn/listing.php?repname=marlinrave
http://stop.itp.tuwien.ac.at/websvn/listing.php?repname=lcsimrave

