What is a VERTEX all about ?

Input to a geometric vertex fit:

- Fitted tracks: \mathbf{p}_i , $\mathrm{cov}(\mathbf{p}_i,\mathbf{p}_i)$, $i=1\dots n$
 - $\mathbf{p}_i =$ 5-vectors of track parameters,
 - $cov(\mathbf{p}_i, \mathbf{p}_i) = symmetric 5 \times 5$ matrices.
- Beam int. profile (optional): $\mathbf{v},\,\mathrm{cov}(\mathbf{v},\mathbf{v})$
 - $\, {\bf v}$ = 3-vector of centre of the beam i.p.,
 - $cov(\mathbf{v}, \mathbf{v}) =$ symm. or diag. 3×3 matrix.

Results of a geometric vertex fit:

- Vertex position: $\mathbf{x},\,\mathrm{cov}(\mathbf{x},\mathbf{x})$
 - $\mathbf{x} = 3$ -vector of space coordinates,
 - $cov(\mathbf{x}, \mathbf{x}) = symmetric 3 \times 3 matrix.$
- Tracks at vertex: \mathbf{q}_i , $\mathrm{cov}(\mathbf{q}_i,\mathbf{q}_i)$, $i=1\dots n$
 - $\mathbf{q}_i=$ 3-vectors of re-fitted track parameters,
 - $cov(\mathbf{q}_i, \mathbf{q}_i)$ = symmetric 3 × 3 matrices (obtained by the Kalman "smoother").

- But this is not the full information from a vertex fitter; there are more covariances to deal with:
 - $\operatorname{cov}(\mathbf{q}_i, \mathbf{x})$, $i = 1 \dots n$
- n asymmetric 3 imes 3 matrices,
- $\operatorname{cov}(\mathbf{q}_i, \mathbf{q}_j)$, $i, j = 1 \dots n$ with $i \neq j$ $n \cdot (n-1)$ asymmetric 3×3 matrices.

In practice, the $cov(\mathbf{q}_i, \mathbf{q}_j)$, $i \neq j$ are only needed in case of a subsequent vertex re-fit with kinematic constraints. The *n* asymmetric $cov(\mathbf{q}_i, \mathbf{x})$, however, should not be forgotten for persistency (LCIO).

Tian Academy Winfried A. Mitaroff

