What is a VERTEX all about ?

Input to a geometric vertex fit:

- Fitted tracks: $\mathbf{p}_{i}, \operatorname{cov}\left(\mathbf{p}_{i}, \mathbf{p}_{i}\right), i=1 \ldots n$
$-\mathbf{p}_{i}=5$-vectors of track parameters,
$-\operatorname{cov}\left(\mathbf{p}_{i}, \mathbf{p}_{i}\right)=$ symmetric 5×5 matrices.
- Beam int. profile (optional): $\mathbf{v}, \operatorname{cov}(\mathbf{v}, \mathbf{v})$
$-\mathbf{v}=3$-vector of centre of the beam i.p.,
$-\operatorname{cov}(\mathbf{v}, \mathbf{v})=$ symm. or diag. 3×3 matrix.
Results of a geometric vertex fit:
- Vertex position: $\mathbf{x}, \operatorname{cov}(\mathbf{x}, \mathbf{x})$
$-\mathrm{x}=3$-vector of space coordinates,
$-\operatorname{cov}(\mathbf{x}, \mathrm{x})=$ symmetric 3×3 matrix.
- Tracks at vertex: $\mathbf{q}_{i}, \operatorname{cov}\left(\mathbf{q}_{i}, \mathbf{q}_{i}\right), i=1 \ldots n$
$-\mathbf{q}_{i}=3$-vectors of re-fitted track parameters,
$-\operatorname{cov}\left(\mathbf{q}_{i}, \mathbf{q}_{i}\right)=$ symmetric 3×3 matrices

(obtained by the Kalman "smoother").
- But this is not the full information from a vertex fitter; there are more covariances to deal with:
$-\operatorname{cov}\left(\mathrm{q}_{i}, \mathrm{x}\right), \quad i=1 \ldots n \quad n$ asymmetric 3×3 matrices,
$-\operatorname{cov}\left(\mathrm{q}_{i}, \mathrm{q}_{j}\right), i, j=1 \ldots n$ with $i \neq j \quad n \cdot(n-1)$ asymmetric 3×3 matrices.
In practice, the $\operatorname{cov}\left(\mathbf{q}_{i}, \mathbf{q}_{j}\right), i \neq j$ are only needed in case of a subsequent vertex re-fit with kinematic constraints.
The n asymmetric $\operatorname{cov}\left(q_{i}, x\right)$, however, should not be forgotten for persistency (LCIO).

