Summary: SUSY, New Physics, Cosmology and the ILC

- 34 great talks in these sessions!
- Disclaimer: I can't possibly cover them all my apologies to those omitted

Supersymmetry: Predictions & Constraints

Prediction for $\sin^2\theta_{eff}$ in the SM and MSSM

3-Loop Evaluation of α_s in SUSY

Important for extrapolations to the GUT scale

Predictions for SUSY

- Update global fit to include the observables:
- Use existing data of M_W , $\sin^2\theta_{\rm eff}$, ${\sf BR}(b\to s\gamma)$, $(g-2)_\mu$, M_h new observables: Γ_Z , ${\sf BR}(B_s\to \mu^+\mu^-)$, ${\sf BR}(B_u\to \tau\nu_\tau)$, ΔM_{B_s}
- For the CMSSM and NUHM

 $m_0, \ m_{1/2}, \ A_0, \ aneta, \ ext{sign}\mu \quad ext{and} \quad M_A \ ext{and} \ \mu$

Results: CMSSM: prediction for $m_{\tilde{\tau}_1}$

Supersymmetry: Production @ ILC

Corrections to SUSY Production

- Off-shell kinematics for signal
- Irreducible bckgrnd from SUSY
- Reducible SM bckgrnd

Factorization in 2 → 2 production and decay insufficient/wrong

Off-shell effects and interferences affect results (especially with cuts)

Use full matrix elements

Tools are available for ILC/LHC: Whizard/O'Mega

- More channels contribute to $e^+e^- \rightarrow b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0$: $e^+e^- \rightarrow Zh, ZH, Ah, HA, \tilde{\chi}_1^0\tilde{\chi}_2^0, \tilde{\chi}_1^0\tilde{\chi}_3^0, \tilde{\chi}_1^0\tilde{\chi}_4^0, \tilde{b}_1\tilde{b}_1^*, \tilde{b}_1\tilde{b}_2^*$ (412 diagrams)
- ▶ Irreducible SM background: $e^+e^- \to b\bar{b}\nu_i\bar{\nu}_i$ (WW fusion, Zh,ZZ) $\tilde{b}_1 \to b\tilde{\chi}_1^0$ decay kinematics affected

Example: b-squark production $@\sqrt{s} = 800 \text{ GeV}$

U. Martyn

Metastable Staus & Gravitinos

- Present in gauge/gaugino mediation
- Gravitino is good DM candidate
 - Stau stops

 124.3 ± 0.1

- Stau decays (record lifetime)
- Measure recoil spectra

 209.3 ± 2.4

 $(2.1 \pm 0.02) \, 10^6$

Difficult @ LHC!

 0.1 ± 0.001

 10 ± 0.1

< 9

 10 ± 5

Pulse operation of detectors needs to be revised for long-lived particles

Radiative Neutralino Production

$$e^+e^- \rightarrow \chi_1{}^0\chi_1{}^0 \,+\, \gamma$$

Is this observable? Need full MC study...

Polarized beams enhance signal reduce bckgrnd

Results for sample msugra point

Š.	(P_{e^+}, P_{e^-})	(0 0)	(8.0 0)	(-0.3 0.8)	(0 0.9)	(-0.3 0.9)	(-0.6 0.8)
	$\sigma(\tilde{\chi}_1^0\tilde{\chi}_1^0\gamma)$	4.7 fb	8.2 fb	11 fb	8.6 fb	11.2 fb	13 fb
	$\sigma_{B}(uar{ u}\gamma)$	3354 fb	689 fb	495 fb	356 fb	263 fb	301 fb
	S	1.8	7	11	10	15	17
9	$R = \sigma/\sigma_{B}$	0.1%	1.2%	2.2%	2.4%	4.3%	4.4%

J. List

Model Independent WIMP Searches

No assumptions on nature of WIMP interactions

coupling: e_R^-/e_L^+

3σ Sensitivity in coupling strength – mass plane after full detector simulation of signal & background

Beam polarization enhances reach & mass resolution

WIMP (Case 2):

- P-wave annihilator (J=1), $S_{\chi} = \frac{1}{2}$
- \triangleright couplings: e_R^- / e_L^+
- $M_{\chi}=180~{\rm GeV}$
- $\kappa_e = 0.3$

Mass resolution

$$P_{e^-}=0.8, P_{e^+}=0.0$$
: $M_\chi=180.7\pm1.3~{
m GeV}$

$$P_{e^-}=0.8, P_{e^+}=0.6$$
: $M_\chi=180.5\pm0.6~{
m GeV}$

Chargino Production & Decay @ NLO

T. Robens

- Implement NLO corrections to production in WHIZARD
 - Theoretical precision match exp't precision
 - Agrees well with literature
 - Resum γ 's allows soft cuts

- NLO corrections to χ^{\pm} Decays with CP violating interactions
 - Calculated in on-shell scheme

CP Violation in SUSY Production & Decay

- Determine phases & CP structure of SUSY
- Form CP-odd observables in χ^{\pm} , χ^{0} production & decay

Triple product asymmetry in gaugino decay

Triple products:
$$T = \vec{p}_{e^-} \cdot (\vec{p}_f \times \vec{p}_{\vec{f}'})$$
 or $T = \vec{p}_{e^-} \cdot (\vec{p}_{\vec{\chi}_j} \times \vec{p}_f)$

T-odd asymmetry: $A_T = \frac{\sigma(T > 0) - \sigma(T < 0)}{\sigma(T > 0) + \sigma(T < 0)}$

T-odd asymmetry with transverse beam pol

Asymmetries can be ~10-20%

Supersymmetry: Parameter Determination

LHC Inverse Problem

Generate blind SUSY data and map it back to parameters in the fundamental Lagrangian

- Generated 43,026 models within MSSM for 10 fb⁻¹ @ LHC
- For 15 parameters:

Inos : $M_1,\ M_2,\ M_3,\ \mu$ + tan β Squarks : $m_{\tilde{Q}_{1,2}},\ m_{\tilde{U}_{1,2}},\ m_{\tilde{D}_{1,2}},\ m_{\tilde{Q}_3},\ m_{\tilde{t}_R},\ m_{\tilde{b}_R}$ Sleptons : $m_{\tilde{L}_{1,2}},\ m_{\tilde{E}_{1,2}},\ m_{\tilde{L}_3},\ m_{\tilde{\tau}_R}$

Main result:

<degeneracies> ~ 242 models
 A signature maps back into
 a number of small islands
 in parameter space

Begs the question.....

$ILC = LHC^{-1}$?

Our Analysis:

- 10 simultaneous SUSY channels
 (Pythia & CompHEP) of 242 models
- Full SM bckgrnd (Whizard)
- ·ISR, Beamstrahlung, Beam energy spread
- ·SiD detector simulation
- •Analyze 500 fb⁻¹ "data" at 500 GeV with 80% P_{e-} and appropriate cuts

Several iterations necessary to find best cuts!

Our Results:

- Random SUSY signal smaller than SPS1a
- Many SPS1a cuts kill random SUSY signal
- Pythia underestimates SM bckgrnd
- Forward detector coverage critical
- Some difficult cases: close stau-LSP mass, $\chi_1^{\pm} \rightarrow W^* \chi_1^{0} \rightarrow jj \chi_1^{0}$

Random SUSY signal is not a piece of cake!

Sample Results

Selectron production

Blue = SM bckgrnd Model A Model B

Chargino pair \rightarrow jj + μ + missing, on-shell W's

Chargino pair \rightarrow jj jj + missing, off-shell W's

SUSY with Heavy Sfermions

Study light gaugino production

- Masses, production rates, A_{FB} of final leptons/squarks- sensitive to high scale virutal particles
- Precise mass & parameter determinations

$$\begin{array}{l} 506 < m_{\tilde{\chi}^0_3} < 615\,Ge\,V \\ 512 < m_{\tilde{\chi}^0_4} < 619\,Ge\,V \\ 514 < m_{\tilde{\chi}^\pm_2} < 621\,Ge\,V \end{array}$$

$$59.7 \le M_1 \le 60.35 \text{ GeV}, \quad 119.9 \le M_2 \le 122.0 \text{ GeV},$$

 $500 \le \mu \le 610 \text{ GeV}, \quad 14 \le \tan \beta \le 31$
 $1900 \le m_{\tilde{\nu}_e} \le 2100 \text{ GeV}$

Tau Polarization Observables

Distinguish between msugra & SUSY-GUT models

• For $\tilde{\tau}_1 \to \tau \tilde{\chi}_1^0$ the P_{τ} is the same for mSUGRA and SU(5)+ RHN.

• For $\tilde{\tau}_2 \to \tau \tilde{\chi}_1^0$ is completely different.

Determination of SO(10) GUT parameters

Low energy stau mass measurement

$$\Delta_{v_{\tau}} = (1.0 \pm 0.14) \cdot 10^3 \,\text{GeV}^2$$

Heavy neutrino mass

$$M_{v_{RS}} = (1.0 \pm 0.6) \cdot 10^{15} \,\text{GeV}$$

Light neutrino mass

$$m_{\nu_1} = (3.0^{+10}_{-2.0}) \cdot 10^{-3} \,\text{eV}$$

Cosmology and the ILC

A Recent Comprehensive DM Study:

- Assume standard SUSY benchmark points
- Identify expected collider measurements
 Masses, (polarized) production cross sections, FB asymmetries
- Generate 10⁶ SUSY models consistent w/ experiment
 24 parameters, most general MSSM conserving flavor, CP
- Study range of properties relevant to Dark Matter LHC
 500 GeV ILC
 1 TeV ILC

Example: SPS1a, "Bulk region"

- LHC discovers 3 neutralinos, all squarks (except stop), all sleptons (except heavy stau), light higgs
- ILC 500 discovers heavy stau, light chargino, electron sneutrino
- ILC 1000 discovers heavy chargino, light stop, heavy higgs

Evolution of Relic Density Determination for LCC4

- ILC-Cosmology Benchmark point LCC4
- Collider measurements for SUSY production
 - @ LHC/ILC + Higgs property determinations

Full detector simulation

SUSY with extra U(1)

M₁' mass of new gaugino singlet (after mixing)

Relic Density Constraints

Influence on Collider Production

Warped Extra Dimension with SO(10) in the bulk

- Splits families amongst 16 of SO(10) with different Z₃ charges: Baryon symmetry in bulk
- Lightest Z-odd particle, v_R ' KK state, is stable

Bold-face particles have zero-modes

Gives correct relic density for wide range of masses

Comparisons of DM scenarios

Scenario		SUSY1 bino	SUSY2 higgsino	SUSY3 gravitino	$\operatorname{LZP}_{\nu_R}$	LTP heavy photon
LHC	Discovery	***	*	**	*	**
	precision	*	No	?	?	?
ILC	Discovery precision	***	**	**	* ?	** ?
Direct	Post at	*	***	No	***	No
Indirect	γ or ν	*	***	No	**	***

New Physics @ the ILC

Kaluza-Klein (Invisible Architecture III)

Probing New Phyisics in Quartic Gauge Couplings

Encode New Physics in EW Chiral Lagrangian

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{min}} - \sum_{\psi} \overline{\psi}_L \Sigma M \psi_R + \beta_1 \mathcal{L}'_0 + \sum_i \alpha_i \mathcal{L}_i + \frac{1}{v} \sum_i \alpha_i^{(5)} \mathcal{L}^{(5)} + \frac{1}{v^2} \sum_i \alpha_i^{(6)} \mathcal{L}^{(6)} + \dots$$

$$\mathcal{L}'_0 = \frac{v^2}{4} \operatorname{tr} \{ \mathbf{T} \mathbf{V}_\mu \} \operatorname{tr} \{ \mathbf{T} \mathbf{V}^\mu \}$$

$$\mathcal{L}_1 = \operatorname{tr} \{ \mathbf{B}_{\mu\nu} \mathbf{W}^{\mu\nu} \} \qquad \mathcal{L}_6 = \operatorname{tr} \{ \mathbf{V}_\mu \mathbf{V}_\nu \} \operatorname{tr} \{ \mathbf{T} \mathbf{V}^\mu \} \operatorname{tr} \{ \mathbf{T} \mathbf{V}^\nu \}$$

$$\mathcal{L}_2 = \operatorname{itr} \{ \mathbf{B}_{\mu\nu} [\mathbf{V}^\mu, \mathbf{V}^\nu] \} \qquad \mathcal{L}_7 = \operatorname{tr} \{ \mathbf{V}_\mu \mathbf{V}^\mu \} \operatorname{tr} \{ \mathbf{T} \mathbf{V}_\nu \} \operatorname{tr} \{ \mathbf{T} \mathbf{V}^\nu \}$$

$$\mathcal{L}_3 = \operatorname{itr} \{ \mathbf{W}_{\mu\nu} [\mathbf{V}^\mu, \mathbf{V}^\nu] \} \qquad \mathcal{L}_8 = \frac{1}{4} \operatorname{tr} \{ \mathbf{T} \mathbf{W}_{\mu\nu} \} \operatorname{tr} \{ \mathbf{T} \mathbf{W}^{\mu\nu} \}$$

$$\mathcal{L}_4 = \operatorname{tr} \{ \mathbf{V}_\mu \mathbf{V}^\mu \} \operatorname{tr} \{ \mathbf{V}^\mu \mathbf{V}^\nu \} \qquad \mathcal{L}_9 = \frac{1}{2} \operatorname{tr} \{ \mathbf{T} \mathbf{W}_{\mu\nu} \} \operatorname{tr} \{ \mathbf{T} \mathbf{V}^\mu \})^2$$

$$\mathcal{L}_5 = \operatorname{tr} \{ \mathbf{V}_\mu \mathbf{V}^\mu \} \operatorname{tr} \{ \mathbf{V}_\nu \mathbf{V}^\nu \} \qquad \mathcal{L}_{10} = \frac{1}{2} \left(\operatorname{tr} \{ \mathbf{T} \mathbf{V}_\mu \} \operatorname{tr} \{ \mathbf{T} \mathbf{V}^\mu \} \right)^2$$

Measure deviations in quartic couplings:

- Triple gauge production
- Vector boson scattering

Interpret quartic couplings as new resonances

Integrating out resonances

leads to anomalous quartic couplings

$$\alpha_5 = g_\sigma^2 \left(\frac{v^2}{8M_\sigma^2} \right) \qquad \alpha_7 = 2g_\sigma h_\sigma \left(\frac{v^2}{8M_\sigma^2} \right) \qquad \alpha_{10} = 2h_\sigma^2 \left(\frac{v^2}{8M_\sigma^2} \right)$$

Full signal & bckgrnd computed via WHIZARD

Final result:

Spin	I=0	I=1	I=2
0	1.55	1 1 1 2	1.95
1	_	2.49	8
2	3.29	18-18	4.30

Spin	I = 0	I = 1	I=2
0	1.39	1.55	1.95
1	1.74	2.67	(
2	3.00	3.01	5.84

A. Manteuffel

Anomalous Couplings in $\gamma\gamma \rightarrow WW$

Gauge and gauge-Higgs anomalous couplings

$$\mathcal{L}_{2} = \frac{1}{v^{2}} \left(h_{W} O_{W} + h_{\tilde{W}} O_{\tilde{W}} + h_{\varphi W} O_{\varphi W} + h_{\varphi \tilde{W}} O_{\varphi \tilde{W}} + h_{\varphi B} O_{\varphi B} + h_{\varphi \tilde{B}} O_{\varphi \tilde{B}} + h_{WB} O_{WB} + h_{\tilde{W}B} O_{\tilde{W}B} + h_{\varphi}^{(1)} O_{\varphi}^{(1)} + h_{\varphi}^{(3)} O_{\varphi}^{(3)} \right),$$

$$\begin{split} O_{W} &= \epsilon_{ijk} \ W_{\mu}^{i\,\nu} \ W_{\nu}^{j\,\lambda} \ W_{\lambda}^{k\,\mu} \,, \\ O_{\varphi W} &= \frac{1}{2} \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} \ W^{i\,\mu\nu} \,, \\ O_{\varphi B} &= \frac{1}{2} \left(\varphi^{\dagger} \varphi \right) \ B_{\mu\nu} B^{\mu\nu} \,, \\ O_{WB} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{WB} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{WB} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{\mu\nu} \,, \\ O_{\psi B} &= \left(\varphi^{\dagger} \varphi \right) \ W_{\mu\nu}^{i\,\mu} B^{$$

Sensitivity with polarized beams

Comparison of Sensitivities

	LEP & SLD (*)	<i>ee</i> → <i>WW</i> (*)	$\gamma\gamma \rightarrow WW$	$\gamma\gamma \rightarrow WW$
	(10000)	39 60	unpolarised	$J_z=0$
	$h_i [10^{-3}]$	δh_i [10 ⁻³]	$\delta h_i [10^{-3}]$	$\delta h_i [10^{-3}]$
h_W	-69 ± 39	0.3	0.6	0.3
h_{WB}	-0.06 ± 0.79	0.3	1.6	0.7
$h_{arphi WB}$	×	×	2.2	0.9
$h_{\varphi}^{(3)}$	-1.15 ± 2.39	36.4	×	×
$h_{\tilde{W}}$	68 ± 81	0.3	0.7	0.3
$h_{\widetilde{W}B}$	33 ± 84	2.2	2.0	0.9
$h_{arphi ilde{W} ilde{B}}$	×	X	2.0	0.6

Non-Commutative Spacetime

- Postulate that spacetime coordinates do not commute
- Occurs in string theory in the presence of background fields

$$[\hat{x}_{\mu},\hat{x}_{\nu}] = i\theta_{\mu\nu} = i\frac{C_{\mu\nu}}{\Lambda_{NC}^2} \quad \Rightarrow \quad \Delta\hat{x}_{\mu} \cdot \Delta\hat{x}_{\nu} \geqslant \frac{\theta_{\mu\nu}}{2}$$

Characteristic NC scale

- Modifies SM interactions
- Induces new interactions among gauge fields

ILC sensitivity on Λ_{NC} :

$(K_{Z\gamma\gamma},K_{ZZ\gamma})$	$ \vec{\mathbf{E}} ^2 = 1, \vec{\mathbf{B}} = 0$	$\vec{E} = 0, \vec{B} ^2 = 1$
$K_0 \equiv (0,0) \text{ (mNCSM)}$	$\Lambda_{NC} \gtrsim 2 \text{TeV}$	$\Lambda_{NC} \gtrsim 0.4\text{TeV}$
$K_1 \equiv (-0.333, 0.035) \text{ (nmNCSM)}$	$\Lambda_{NC} \gtrsim$ 5.9 TeV	$\Lambda_{NC} \gtrsim 0.9\text{TeV}$
$K_5 \equiv (0.095, 0.155) \text{ (nmNCSM)}$	$\Lambda_{NC} \gtrsim 2.6 \text{TeV}$	$\Lambda_{NC} \gtrsim 0.25\text{TeV}$
$K_3 \equiv (-0.254, -0.048) \text{(nmNCSM)}$	$\Lambda_{NC} \gtrsim 5.4 \text{TeV}$	$\Lambda_{NC} \gtrsim 0.9\text{TeV}$

Studied Zγ production @ ILC and LHC

ILC: Positron Polarization from Beginning?

RDR: <u>helical</u> undulator

→ Positron Polarization: ~30% (60% upgrade value)

We will have a machine with both beams polarized from the beginning! Perfect start for physics!!

To maintain e+ polarization we need

- → spin rotation before and after DR (foreseen)
- → e+ polarimeter @ IP (foreseen)
- → reversal of (+) and (-) helicity of positrons (not yet foreseen)

Without e+ helicity reversal, 50% of the measurements would correspond to the wrong pairing of initial states (lower cross sections!!)

- → advantage of higher lumi is lost
- \rightarrow advantage of $P_{eff} = (P_{e-} + P_{e+})/(1 + P_{e-}P_{e+})$ is lost
- \rightarrow no reduction of polarization uncertainty ΔP_{eff}

ILC: e+ Polarization from Beginning?

To use the e+ polarization for physics we strongly ask to provide a machine with flexible helicity reversal also for the positron beam

No or very rare reversal of e+ helicity could be worse than no e+ polarization

Reminder: Positron Pol is important for numerous physics channels

- Gain in production rate
- Reduction of Bckgrnd
- Access to new channels

Positron Pol WG

Next LHC/ILC Interplay Meeting:

SLAC, November 15–17, 2007

See you there!!!