Impact of beam-beam effects on precision luminosity measurements at the ILC

LCWS07, May 30th - June 3rd 2007, Hamburg

Impact of beam-beam effects on precision luminosity measurements at the ILC

- Principle of luminosity measurement using Bhabha scattering
- Modifications due to beam-beam effects
- Consequences on reachable luminosity precision
- Dependence with the bunch parameters and energy
- Summary and conclusions

Luminosity measurement in the LumiCal using Bhabha scattering at small angles

- Bhabha particles are detected in coincidence in the LumiCal covering a range of 26.2 to 82 mrad.
- $\mathcal{L} = N_{Bh}/\sigma_{Bh}$ from counting rate \rightarrow integrated luminosity ($\Delta \mathcal{L}/\mathcal{L}$: 10⁻³-10⁻⁴)

$$\frac{d\sigma_{Bhabha}}{d\vartheta} \approx \frac{32\pi\alpha^2}{s} \frac{1}{\vartheta^3}$$

Measurement of energy and scattering angle of the Bhabhas → luminosity spectrum reconstruction

Beam-Beam effects on Bhabha scattering

- Bhabhas are produced with BHLUMI, \sqrt{s} = 500 GeV, 25< θ <90 mrad, **ISR included**
- Beam-Beam effect treatment with GUINEA-PIG (Nominal beam param. used for simul.)
 - Modification of initial state: Beamstrahlung → √s'≤√s, Δθ_{ini}≠ 0, E_{elec}≠ E_{posit}
 - Modification of final state: Electromagnetic deflections → bhabha angle reduction (~10-2mrad) + small energy losses

Consequences on integrated luminosity measurement: Reduction of Bhabha counting rate

First study with the following selection cuts:

$$30 < \theta_{bhabha} < 75 \text{ mrad}$$
 and $E_{bhabha} > 0.8 E_{beam}$

→ Suppression of Bhabha particles

Due to modification of initial state = beamstrahlung: $(-3.78 \pm 0.04)\%$

Due to modification of final state = EM deflections: $(-0.65 \pm 0.02)\%$

Total BHabha Suppression Effect : $(-4.41 \pm 0.05)\%$

Why is there such an important BHSE?

Reduction of Bhabha counting rate

Angular cuts optimization

Beamstrahlung -> enhancement of acollinearity:

$$<\Delta\theta_0>$$
 = 1.27 mrad $<\Delta\theta_1>$ = 2.00 mrad

The angular cut should not be symmetric: new **asymmetrical** cuts 30 mrad< θ_{-+} <75 mrad & 26.2 mrad< θ_{+-} <82 mrad

ref. A. Stahl LC-DET-2005-004

Reduction of Bhabha counting rate

Energy cuts optimization

Beamstrahlung & EM deflections: Bhabha energy reduction + energy asymmetry enhancement \rightarrow use global energy cut: $E_+ + E_- > 0.8 \sqrt{s}$

Consequences on integrated luminosity measurement: Reduction of Bhabha counting rate

Suppression of Bhabha particles inside the selection cuts $30 < \theta_{bhabha} < 75$ mrad and $E_{bhabha} > 0.8$ E_{beam} :

Due to modification of initial state = beamstrahlung: $(-3.78 \pm 0.04)\%$

Due to modification of final state = EM deflections: $(-0.65 \pm 0.02)\%$

Total BHabha Suppression Effect: (-4.41 ± 0.05)%

Suppression of Bhabha particles inside the optimized selection cuts

30 mrad< $\theta_{1.2}$ <75 mrad & 26.2 mrad< $\theta_{2.1}$ <82 mrad and E₊+E₋ > 0.8 \sqrt{s} :

Due to modification of initial state = beamstrahlung: $(-1.03 \pm 0.04)\%$

Due to modification of final state = EM deflections: $(-0.48 \pm 0.02)\%$

Total BHabha Suppression Effect: (-1.51 ± 0.05)%

The bias on integrated luminosity measurement is reduced about a factor 3 with asymmetric angular cuts and global energy cut

Reconstruction of luminosity spectrum from lumical - 1

from K. Mönig ref. LC-PHSM-2000-60-TESLA

$$x_{theor} = \frac{\sqrt{s'}}{\sqrt{s}} \approx \sqrt{1 - 2\frac{\sin(\theta_1 + \theta_2)}{\sin(\theta_1 + \theta_2) - \sin\theta_1 - \sin\theta_2}} = x_{exp}$$

Experimentally EM deflections have no impact on the reconstructed lumi spectrum

Reconstruction of luminosity spectrum from lumical - 2

reconstructed lumi spectrum reconstructed lumi spectrum with pessimistic error on angular reconstruction: σ_{θ} =0.13 mrad

Experimental angle resolution $\rightarrow \Delta < x_{rec} > / < x_{rec} > 5 \ 10^{-4}$

Required reconstruction accuracy to control the BHSE

σ _x [nm]	£ [μb ⁻¹]	<x<sub>rec></x<sub>	BHSE [%]
555	1.8	0.976	-2.22
755	1.2	0.980	-1.14
Δ		4 10-3	1 10-2

- Modification of beamstrahlung with beam parameters
 - → modification in luminosity spectrum and mean value
 - → modification in BHSE
- To control the bias on integrated lumi at 10⁻³, variations in the rec lumi spectrum need to be known with a precision of 4.10⁻⁴
- Fitting the shapes of the lumi spectra → improvement of sensitivity to beam parameter variation

Sensitivity of BHSE to beam parameters

- BHSE is insensitive to beam offsets, Δ_x and $\Delta_{y,}$, and to longitudinal shifts of the bunch waist
- BHSE is insensitive to the vertical size of the bunch
- BHSE has strong dependence on bunch length, σ_z , and horizontal size, σ_x

Sensitivity of BHSE to beam sizes

$\frac{\Delta \sigma_z}{\sigma_z}$	$\Delta BHSE_{bslung}[\%]$	$\Delta BHSE_{EMdef}[\%]$	$\Delta BHSE [\%]$
20%	$-0.40 \\ +0.25$	$-0.15 \\ +0.10$	$-0.50 \\ +0.30$
10%	$-0.20 \\ +0.15$	$-0.07 \\ +0.05$	$-0.25 \\ +0.15$
5%	$-0.10 \\ +0.05$	$-0.03 \\ +0.02$	$-0.15 \\ +0.05$
$\frac{\Delta \sigma_x}{\sigma_x}$	$\Delta BHSE_{bslung}[\%]$	$\Delta BHSE_{EMdef}[\%]$	$\Delta BHSE [\%]$
20%	$-1.10 \\ +0.35$	$-0.10 \\ +0.08$	$-1.20 \\ +0.40$
10%	$-0.40 \\ +0.20$	$-0.04 \\ +0.04$	$-0.45 \\ +0.25$

Sensitivity of BHSE to energy

ILC should enable physics runs initially for energies from the Z boson mass to 500 GeV

→ In this energy range beam-beam effects are strongly modified

Constant beam optical parameters BHSE from Beamstrahlung BHSE from EM deflections Total BHSE **Total BHSE** 1.5 0.5 500 550 600 350 400 450 √s (GeV)

Relative Energy lost by Beamstrahlung:

$$\delta \propto \frac{N^2 \gamma}{\sigma_x^2 \sigma_z} \propto \frac{N^2 \gamma^2}{\varepsilon_x^* \beta_x \sigma_z}$$

$$\mathcal{L} = \frac{N^2}{4\pi\sigma_x\sigma_y}H_D = \frac{N^2\gamma}{4\pi\sqrt{\varepsilon_x^*\beta_x\varepsilon_y^*\beta_y}}H_D$$

$$\mathcal{L} \propto \sqrt{\frac{\delta}{\varepsilon_y}} \frac{P_{beam}}{E} H_D$$

Beam angular deflections:

$$x', y' \propto \frac{Nx, y}{\gamma \sigma_{x, y} \sigma_x} \propto \frac{N \sigma_{x, y}}{\gamma \sigma_{x, y} \sigma_x} \propto \frac{N}{\sqrt{\gamma} \sqrt{\varepsilon_x^* \beta_x}}$$

Sensitivity of BHSE to energy

ILC should enable physics runs initially for energies from the Z boson mass to 500 GeV

→ In this energy range beam-beam effects are strongly modified

At low energy, EM contribution of BHSE becomes dominant, reaching few 100*10-4

Summary & Conclusions - 1

- Beam-beam effects on Bhabha scattering increase acollinearity (+0.7 mrad) and energy asymmetry on the Bhabha particles → Need to find a compromise with background suppression cuts
- This leads to a bias on the integrated luminosity measurement of few 10-2
- This BHSE mainly arises from beamstrahlung (for Nominal ILC)
- The reconstructed luminosity spectrum in the LumiCal is almost not modified by EM deflections → beamstrahlung can be measured from the lumi spectrum reconstruction
- Angular resolution induces a relative error < 5 10⁻⁴ in the Luminosity spectrum reconstruction
- To control the bias on luminosity measurement at 10⁻³, we would need to reconstruct luminosity spectrum mean value with a precision of 4 10⁻⁴. But a fitting procedure of the lumi spectrum would enable to reach better precision.

Summary & Conclusions - 2

- Main dependences are from the horizontal and longitudinal sizes of the bunch. A precision of 20% is needed on their knowledge to limit the error on BHSE from EM deflections to about 10⁻³.
- For the GigaZ option, a precision of 10⁻⁴ is needed for the luminosity, while the bias from EM deflections is >100 x 10⁻⁴... → need more complete studies.
- "Impact of beam-beam effects on precision luminosity measurements at ILC", C. Rimbault, P. Bambade, K. Mönig, D. Schulte, EuroTeV-Report-2007-017. To be published.