Data rate of a Vertex Detector made of CMOS pixel sensors – LCWS-07 (June 2007)

Data Flow of a Vertex Detector made of Fast Column // CMOS Sensors

Marc Winter (IReS/IPHC-Strasbourg)

OUTLINE

• Major sources of the data flow :

 \Rightarrow Beamstrahlung e $^\pm$

⇔ Electronic noise ???

• Basic features of CMOS Vertex Detector geometry :

⇔ Read-out time per layer ⇒ Assumed sensor read-out architecture

- Preliminary estimate of data flow
- Summary

Constraints from Beamstrahlung

Dominant source of hits : e^{\pm} from Beamstrahlung

Ist layer (L0) : \gtrsim 5 hits/cm²/BX for 4T / 500 GeV / $\mathbf{R_0}$ = 1.5 cm / no safety factor $\rightarrow \lesssim 1.8 \cdot 10^{12} \text{ e}^{\pm}$ /cm²/yr (safety factor of 3)

2nd layer: 8 (6 ?) times less
3rd layer: 25 (< 20 ?) times less

Consequences on Occupancy in 1st layer (L0) : \leq 0.9 % hit occupancy in 50 μs (r.o. time of TESLA TDR) \hookrightarrow signal spread on \leq 4.5–9 % pixels (cluster multiplicity \sim 5-10)

 \Rightarrow 1) aim for shorter read-out time in L0 than in TDR \rightarrow typically \leq 25 μs (compromise with power dissipation, multiple scattering, ...)

2) aim for shorter read-out time in L1 than in TDR \rightarrow typically \sim 50 μs (vs 250 μs) and presumably smaller radius (e.g. \sim 20 – 22 mm) (use tracks extrapolated from L1-4 down to L0)

3) aim for "relaxed" read-out time in L2, L3, L4: \sim 100 – 200 μs (vs 250 μs)

 \hookrightarrow depends on backscattered e^{\pm} rate

Consequences on Inner Layer Design

 ${\color{red} igstacles} \lesssim$ 25 μs in L0:

columns of 256 pixels (20 μm pitch) \perp beam axes read out in // at \sim 10 MHz \rightarrow 5 mm depth

 \sim 50 μs in L1:

columns of 512 pixels (25 μm pitch) \perp beam axes read out in // at \sim 10 MHz \rightarrow 13 mm depth

L 0

2 mm wide side band hosting ADC, sparsification, ... \hookrightarrow eliminate pixels with \lesssim 3 N

Option with discriminator instead of ADC : requires smaller pitch \rightarrow presumably same data rate

Basic Vertex Detector Design features

Geometry : 5 cylindrical layers (R = 15 – 60 mm), $||cos\theta|| \le 0.90$ – 0.96 (possibly 6 layers)

L0 and L1 : fast col. // architecture

L2, L3 and L4 : possibly multi-memory pixel architecture (?)

Reference Pixel pitch varied from 20 μm (L0) to 40 μm (L4) by 5 μm steps ightarrow minimise P $_{diss}$

Layer	Radius (mm)	Pitch (μm)	t _{r.o.} (μs)	N_{lad}	N _{pix} (10 ⁶)	P ^{inst} diss (W)	P ^{mean} diss (W)
L0	15	20	25	20	25	<100	<5
L1	\leq 25	25	50	≤26	\leq 65	<130	<7
L2	37	30	<200	24	75	<100	<5
L3	48	35	<200	32	70	<110	<6
L4	60	40	<200	40	70	<125	<6
Total				142	305	<565	<3–30

Ultra thin layers: \leq 0.2 % X $_0$ /layer (extrapolated from STAR-HFT; 35 μm thick sensors)

Very low P_{diss}^{mean} : << 100 W (exact value depends on duty cycle) Fake hit rate $\leq 10^{-5} \rightarrow$ whole detector \cong close to 1 GB/s (mainly from e_{BS}^{\pm})

Vertex Detector Data Flow

Raw data flow (in absence of any signal):

- \simeq L0 : \sim 25 Mpixels read 40 times / train \cong 1 Gpixels / train
- \simeq L1 : \sim 50 MPixels read 20 times / train \cong 1 Gpixels / train
- \simeq L2 + L3 + L4 : \lesssim 300 Mpixels read \lesssim 10 times /train \cong 3 Gpixels / train

Total \cong 5 Gpixels / train \mapsto 25 Gpixels / s

 \simeq 3 Bytes/pixel (\leq 20 address bits + 5–4 charge bits) \Rightarrow raw data flow \cong 75 GB/s

Signal data size dominated by e_{BS}^{\pm} : $\gtrsim 10^3$ hits / BX \mapsto 3.10⁶ hits / train

- \simeq Assuming 5 pixels / cluster : 15.10⁶ pix/train \mapsto 45 MB/train
- \simeq Uncertainties on beamstrahlung rate prediction (factor 3 5) \mapsto 135–225 MB/train \Rightarrow 0.7–1.1 GB/s

Vertex Detector data flow dominated by Beamstrahlung electrons

 \rightarrowtail rate known within factor of 3–5

Electronic noise of CMOS sensors expected to add < 1 % data flow to e_{BS}^{\pm} hits

(based on sensor prototype tests)

Whole detector data flow expected to amount to \sim 0.2 to 1 GB/s (depending on e_{BS}^{\pm} rate)

Pending question : can part of the e_{BS}^{\pm} hits be eliminated upstream of central DAS ?

Adapting the Inner Most Layer to High Background

Design inner most layer (L0) to minimise its sensitivity to (unexpected) high occupancy (\gtrsim 10 %)

Double sided layer \rightarrowtail ~ 1 mm long mini-vectors connecting impacts on both sides of layer

▷ Needs a detailed feasibility (engineering) study

