Beam Test of Scintillation Tiles with MPPC Readout

A. C., R. de Sangro, G. Finocchiaro, P. Patteri, M. Piccolo, M. Rama (LNF-INFN)

Test essentials

- Run in April at the Beam Test Facility in Frascati
- 3 detectors exposed: 3x3x0.5 cm scintillator tiles coupled to a Hamamatsu MPPC, readout via a preamp from CPTA (gain ≈15)
- Beam pulse-by-pulse information from a Pb-glass calorimeter and a tracker

The Beam Test Facility

- Extraction line from the DA Φ NE LINAC
- Variable energy, we used 477 MeV/c
- Pulse frequency 1 or 50 Hz; we trigger on every RF pulse: *a 0-bias measurement*
- N.of e⁻/pulse from 0 up to 20 (actual "policy-dictated" max: 10³ /s)
- Beam spot dimensions (narrow core, some halo): ≈ 1-2 mm vert., ≈ 0.2-1.5 cm horiz.

The setup

A. Calcaterra, LNF-INFN

More on the detectors

- MPPCs :
 - "1": 1600 25-µm pixels, St.Gobain BC-400, readout using green fiber 1mm thick
 - "2": 400 50-µm pixels, generic "green" scintillator, equivalent to EJ260 from Scionix, readout using green fiber 1mm thick
 - "3": 400 50-µm pixels, St.Gobain BC-400, direct readout (no fiber)
- V_{bias} from HP6614C, readout accuracy 0.03% ⊕ 12mV
- Q measured with 12-bit, 100 fC/ch CAEN V792

Aux equipment

- Lead glass calorimeter 10x10cm², 20 X₀ thick, measured the number of MIPs in every beam pulse
- X-Y tracker, 6 layers of mechanicallyquenched^(*) RPC's, measured the beam position with single layer resolution of 2 mm

The BTF calorimeter

- 0,1,2,3-MIP bands with few-% contamination
- Strategy: cut on the Pb-glass calo, and plot our detectors

The RPC tracker

Fitted resolution (cm)

A. Calcaterra, LNF-INFN

Beam profile on MPPC

Q spectra (1 MIP in calor.)

Efficiency in a Y-scan (requesting 1 MIP in calo)

A. Calcaterra, LNF-INFN

Efficiency from nearest MPPC (requesting 1 MIP in calo)

Cutting on MPPC 2, ϵ in MPPC 3 is (84±1)%

A. Calcaterra, LNF-INFN

MPPC 1600 pixels

MPPC 1600 pixels

Conclusions

- This is our first shot at the MPPC characteristics in a tile-scintillator detector
- Efficiencies for MIPs are in the ballpark ~80-90% with the geometry we used
- Gains of ~10⁶ with noise rate ~300 kHz have been obtained
- Preliminary analyses show that the device is linear within the tested range

Outlook

- We need to complete the present analysis, and draw all potential from our data
- A new beam-test is coming up in the fall
- We plan to repeat all measurements, with many improvements
 - T monitoring
 - wider dynamic range (more particles/pulse)
 - different scintillators/photon detectors

Backup Slides

RPC tracker (figs. of merit)

