

Second generation Front-End ASICs for CALICE

LCWS07 Hamburg

CALICE Testbeam at CERN SPS

Next steps

HaRD_ROC (2006)

FLC_PHY3 (2003)

C. de La Taille 2nd generation ASICs for CALICE LCWS07

Technological prototype : "EUDET module"

Front-end ASICs embedded in detector

- Very high level of integration
- Ultra-low power with pulsed mode
- Target 0.35 μm SiGe technology
- All communications via edge
 - 4,000 ch/slab, minimal room, access, power
 - small data volume (~ few 100 kbyte/s/slab)
- Stitchable motherboards »

Elementary motherboard 'stitchable'

24*24 cm ~500 ch. ~8 FE ASICS

Minimal conncections between boards

210

EUDET module FEE : main issues

Mixed signal issues

 Digital activity with sensistive analog front-end

Pulsed power issues

- Electronics stability
- Thermal effects
- To be tested in beam a.s.a.p.

No external components

- Reduce PCB thickness to < 800µm</p>
- Internal supplies decoupling

Low Cost and industrialization are the major goal

Read out : token ring

C. de La Taille 2nd generation ASICs for CALICE LCWS07

HaRDROC chip for DHCAL [LAL, IPNL]

Hadronic Rpc Detector Read Out Chip (Sept 06)

- 64 inputs, preamp + shaper+ 2 discris + memory + Full power pulsing
- Compatible with 1st and 2nd generation DAQ : only 1 digital data output

HaRDROC architecture

Digital part

Full daisy-chain readout

- Internal or external Trigger
- OR36 output
- Discriminator Validation fas input
- 4kbyte RAM
- « Open collector » output signals
- LVDS clocks
- Start conversion
- Start/end readout

HARDROC1: TESTBOARD with Chip On Board

2 steps to facilitate the bonding

Performance

Good performance

Power dissipation : 1.4mW/channel (unpulsed)

- Power pulsing tests starting. Anticipate 7-15 μW/channel (or cm2)
- S-curves
 - Good sensitivity to 100fC. Can go down to 10fC

Auto trigger with 10fC: Qinj=10fC in Ch7 DAC0 and DAC1=255 (~5fC)

HARDROC1 PERFORMANCE SUMMARY

Number of inputs/outputs	64 inputs, 1 serial output			
Input Impedance	50-70Ω			
Gain Adjustment	0 to 4, 6bits, accuracy 6%			
Bipolar Fast Shaper	≈3.5 mV/fC tp=15ns			
10 bit-DAC	2.5 mV/fC, INL=0.2%			
Trigger sensitivity	Down to 10fC			
Slow Shaper (analog readout)	≈50 mV/pC, 5fC to 15pC , tp= 50ns to 150ns			
Analog Xtk	2%			
Analog Readout speed	5 MHz			
Memory depth	128 (20kbits)			
Digital readout speed	5MHz or more			
Power dissipation (not pulsed)	100 mW (64 channels)			

SKIROC for W-Si ECAL

Silicon Kalorimeter Integrated Read Out Chip (Nov 06)

- 36 channels with 16 bits Preamp + bi-gain shaper + autotrigger + analog memory + Wilkinson ADC
- Digital part outside in a FPGA for lack of time and increased flexibility
- Technology SiGe 0.35µm AMS. Chip received may 07, tests starting

One channel

SPIROC overview

- Silicon Photomultiplier Integrated Read Out Chip
 - A-HCAL read out
- Silicon PM detector
 - G = 3 E5 to 1 E6
 - Same biasing scheme as TB
- 36 channels
 - Charge measurement (15bits)
 - Time measurement (< 1ns)</p>
- Compatible with old & new DAQ
- Many SKIROC, HARDROC, and MAROC features re-used
- Submission foreseen june 11th

SPIROC: One channel schematic

Conclusion

- Several large dynamic range ASICs developped for CALICE physics prototypes
 - ECAL W-Si calorimeter : FLC_PHY3 = 10⁴ channels in beam, dynamic range 0.1-600 MIPS
 - AHCAL Tile-SiPM calorimeter : FLC_SiPM = 10³ channels installed, beam in summer 06
 - DHCAL GEM/RPC
- 3 major second generation ASICs for technological prototypes submitted
 - HARdROC submitted for DHCAL RPCs
 - SKIROC submitted for ECAL Si-W
 - SPIROC for AHCAL SiPM
 - Power pulsing, Zero-suppress, Auto-trigger, 2nd generation DAQ...

System aspects not to be forgotten

Power supplies ! Mechanics, reliability...

EUDET - Detector slab (2)

EUDET - Detector slab (1)

v.1 Design SLAB

Main ISSUES :

Front End chips inside :

- ⇒ Thermal dissipation (cooling ?)
- ⇒ Chip behaviour in an electron shower
- Long structure :
- Design and fabrication problems
 (composite with segmentation of W plates, mechanical behaviour ...)
- Segmentation of PCB (design of an interconnection)
- Diminution of the pads size
- ➡ Increases of the number of channels (thermal cooling ?)
- ⇒ Size of glue dots

SPIROC main features

- 36-channel readout chip
- Internal input 8-bit DAC (0-5V) for SiPM gain adjustment

Energy measurement :

- 2 gains / 12 bit ADC 1 pe → 2000 pe
- Variable shaping time from 50ns to 100ns
- pe/noise ratio : 11
- Time measurement :
 - 1 TDC (12 bits) step~100 ps
 - pe/noise ratio on trigger channel : 24
 - Fast shaper : ~15ns
 - Auto-Trigger on ½ pe
- Analog memory for time and charge measurement : depth 16
- Power pulsing integrated
- Low consumption : $\sim 25\mu W$ per channel (in power pulsing mode)
- Calibration injection capacitance
- Embedded bandgap for voltage references
- Embedded DAC for trigger threshold
- Compatible with physic prototype DAQ
 - Serial analogue output
 - External "force trigger"
- Probe bus for debug
- 12-bit Bunch Crossing ID
- SRAM with data formatting 2 x 2kbytes = 4kbytes
- Output & control with daisy-chain

TEST BOARD

