
Individual Particle Reconstruction: PFA Development in the US

Norman Graf (for M. Charles, L. Xia, S. Magill)

LCWS07 June 2, 2007

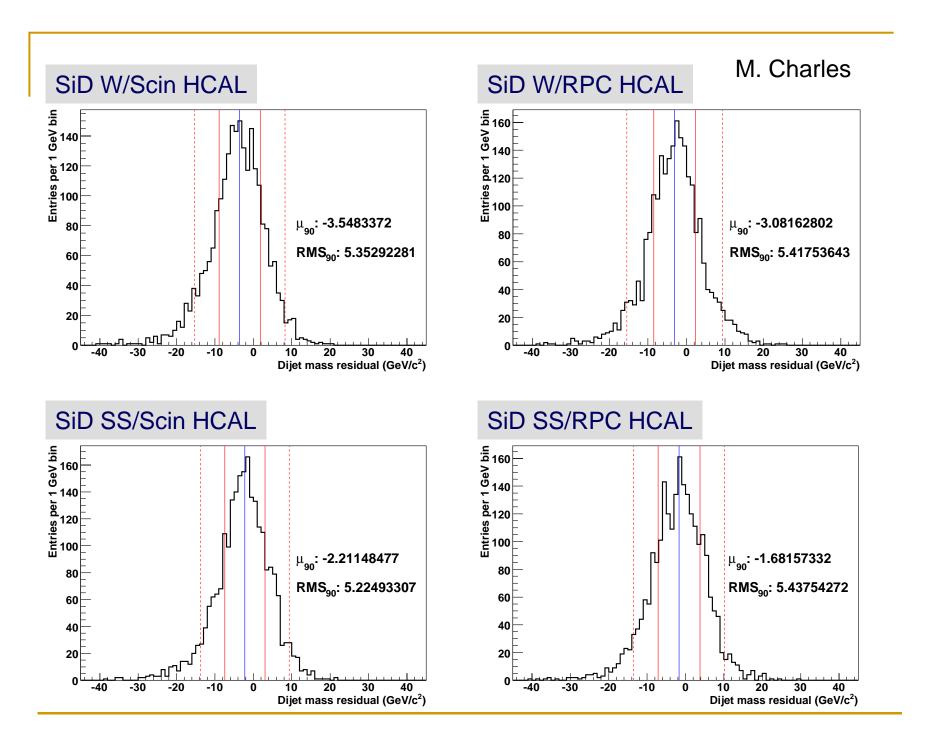
Overview

- PFA reconstruction is complex & you have to get many individual steps right:
 - track finding, fitting & extrapolation
 - track-cluster matching
 - MIP identification
 - photon identification
 - hadronic shower clustering
 - handling of displaced secondaries
 - calibration of photons
 - calibration of neutral hadrons
 - E/p cut (including calibration)
- PFA development isn't about finding the "magic bullet" perfect algorithm. It's about iteratively
 - finding the worst problems that are limiting performance
 - fixing them
 - hopefully seeing things improve a little
 - finding the next worst problems
- Interplay between detector and algorithm makes it tricky to really tune detector design
 - you need a really good (mistake-free) algorithm
 - fair comparison means equal tuning on different detectors
- But we can say: you can do at least this well with this detector.

Analysis Tools

- Common input data samples
 - Single particles for tuning detector response
 - Dijet samples (uds) @ 91, 200, 500 GeV cms
 - $= e^+e^- \rightarrow ZZ \rightarrow (vv) (qq)$
- Common detector simulations
- Provide a number of QA tools to assure that some common tasks are handled in the same way.
- Calorimeter Calibrations
 - Sampling fractions & common energy corrections
- Perfect PFA performance
 - Common definitions of "final state" particles
 - Based on Generator or Simulated Particles?
 - Standard cheated tracks, cheated clusters

Analyses

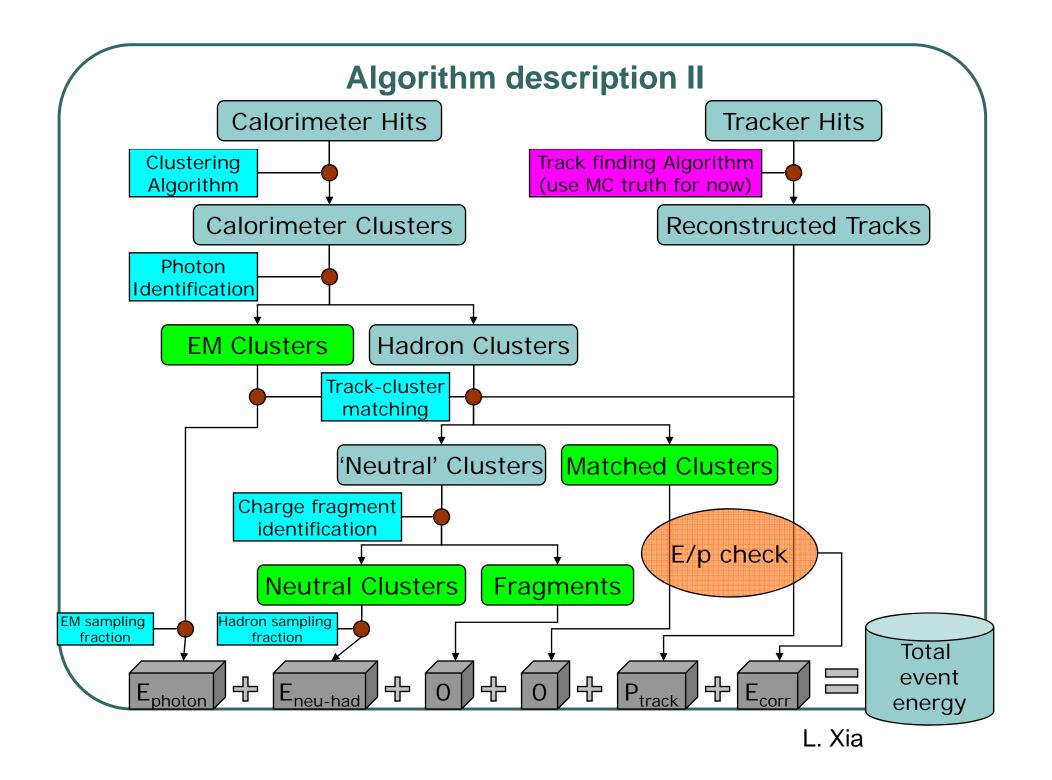

- Presenting three different analyses
 - Mat Charles (U. Iowa)
 - Lei Xia (ANL)
 - Steve Magill (ANL), Norman Graf (SLAC)
- Detectors are variants of SiD concept.
 - But framework supports essentially arbitrary detectors and plan is to explore larger phase space.
- More details in slides presented at recent SiD workshop at FNAL.

Algorithm Description I

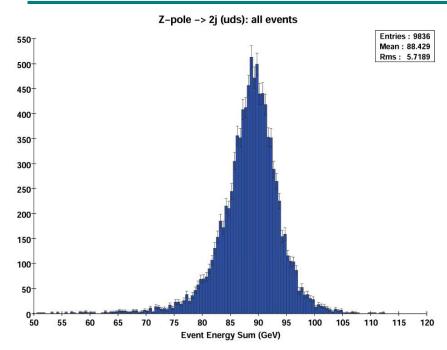
- Main philosophy is to tackle the (relatively) easy problems first.
- Step 1: Find photons, remove their hits.
 - Tight clustering
 - Apply shower size, shape, position cuts (very soft photons fail these)
 - Make sure that they aren't connected to a charged track
- Step 2: Identify MIPs/track segments in calorimeters. Identify dense clumps of hits.
 - These are the building blocks for hadronic showers
 - Pretty easy to define & find
- Step 3: Reconstruct skeleton hadronic showers
 - Coarse clustering to find shower components (track segments, clumps) that are nearby
 - Use geometrical information in likelihood selector to see if pairs of components are connected
 - Build topologically connected skeletons
 - If >1 track connected to a skeleton, go back and cut links to separate
 - Muons and electrons implicitly included in this step too
- Step 4: Flesh out showers with nearby hits
 - Proximity-based clustering with 3cm threshold
- Step 5: Identify charged primaries, neutral primaries, soft photons, fragments
 - Extrapolate tracks to clusters to find charged primaries
 - Look at size, pointing, position to discriminate between other cases
 - Merge fragments into nearest primary
 - Use E/p veto on track-cluster matching to reject mistakes (inefficient but mostly unbiased)
 - Use calibration to get mass for neutrals & for charged clusters without a track match (calibrations for EM, hadronic showers provided by Ron Cassell)
- Known issues & planned improvements:
 - Still some cases when multiple tracks get assigned to a single cluster
 - Punch-through (muons and energetic/late-showering hadrons) confuses E/p cut
 - Improve photon reconstruction & ID
 - Improve shower likelihood (more geometry input)
 - Use real tracking when available
 - No real charged PID done at this point

Current Performance

- Looking at: $e^+e^- \rightarrow Z1$ (vv) Z2 (qq) for q=u,d,s at \sqrt{s} =500 GeV
- requiring primary quarks have |cos(theta)|<0.8</p>
- reconstructing dijet invariant mass, i.e. mass of Z2
- quoting residual = (true mass of Z2 reconstructed mass of Z2)


Current Performance

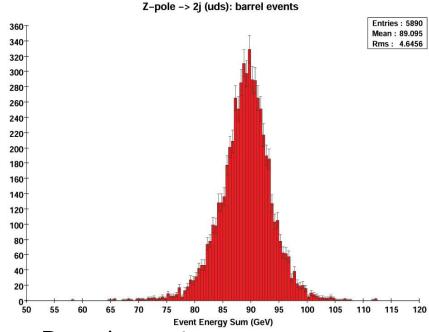
	rms90	mean90
W/Scint	5.4 GeV	-3.5 GeV
W/RPC	5.4 GeV	-3.1 GeV
SS/Scint	5.2 GeV	-2.2 GeV
SS/RPC	5.4 GeV	-1.7 GeV


- Little discriminations between designs at this point
- Working to improve performance...
- but not actually too far from "glass ceiling" of 4.1 GeV (for W/RPC).
- To understand/approach/move beyond that, need to think more broadly:
 - Is assumed tracking performance realistic? Too pessimistic? Too optimistic?
 - Can calibration be improved?
 - Can we put in more information? E.g. pick up low-pt tracks that are being ignored
 - Is this event type (with boosted jets) representative?
 - What physics models are being used for the showers? (Icphys vs Ihep vs...)

Performance Caveats

- Numbers depend on things that are not really algorithm specific:
 - detector
 - physics event type
 - Assumptions about tracking & track extrapolation
 - polar angle & acceptance
 - calibration
 - how physics quantity (e.g. dijet mass) is measured
 - how figure of merit (e.g. rms90) is computed
- Some things lower the ceiling rapidly. For example, with $e^+e^- \rightarrow ZZ \rightarrow (vv)(qq)$ in $|\cos(theta)|<0.8$ for W/RPC SiD detector, dijet mass resolution (rms90) is:
 - 0.0 GeV if completely cheating
 - 0.5 GeV dropping missed particles (using GenFinalStateParticles)
 - 1.2 GeV dropping missed particles (using SimFinalStateParticles with cuts)
 - 2.9 GeV including resolution of neutrals using Ron's Z-pole calibration
 - 3.2 GeV requiring a track for charged particles (else treated as neutral hadrons)
 - 3.4 GeV requiring that tracks can be extrapolated to ECAL surface
 - 4.1 GeV requiring cluster be within 25mm (depending how track extrapolation is done)
 - 5.1 GeV if using naive helical track extrapolation instead
- So different assumptions about tracking, calibration, etc can have a big impact.
 - ... unless completely confusion-dominated

Current PFA Z-pole performance

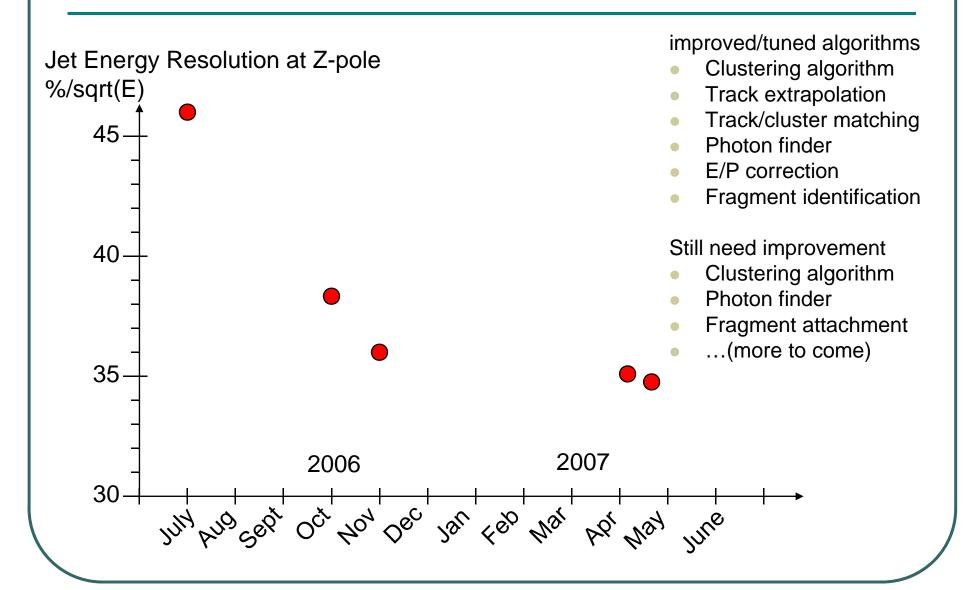


Mean RMS RMS90 88.43 GeV

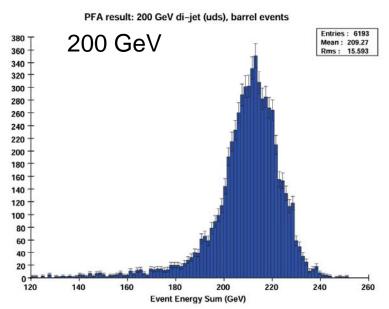
RMS 5.718 GeV

RMS90 3.600 GeV

[38.2 %/sqrt(E)]

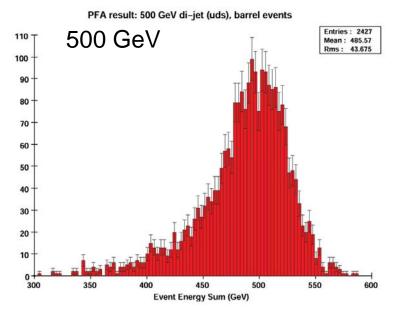

Barrel events (cos(theta[Q]) < 1/sqrt(2))

Mean 89.10 GeV RMS 4.646 GeV


RMS90 3.283 GeV

[34.7 %/sqrt(E)]

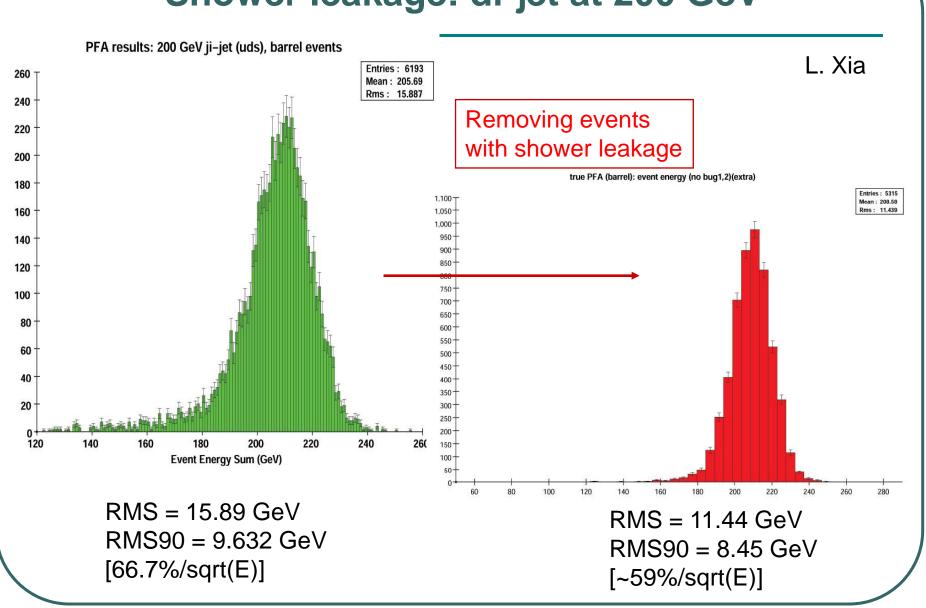
Progress on PFA performance at Z-pole



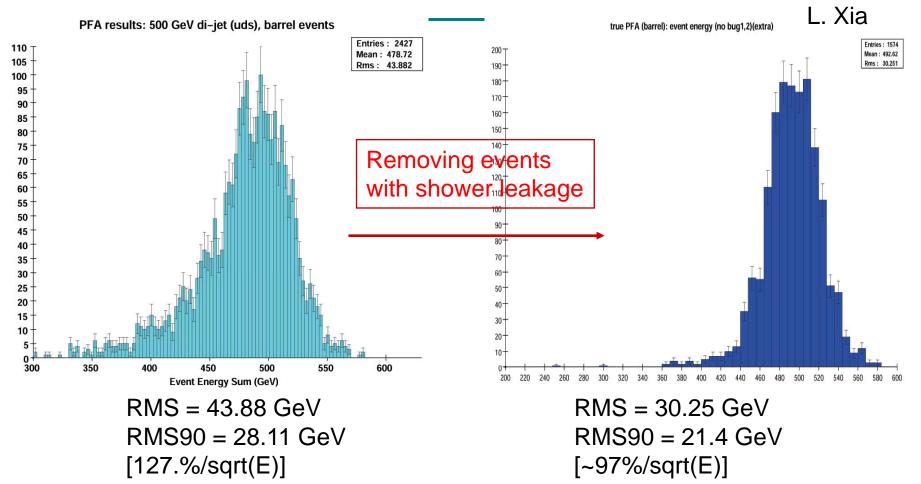
Using Z-pole tuned PFA at higher energies

Barrel event (cos(theta[Q]) < 1/sqrt(2))

Mean 209.3 GeV RMS 15.6 GeV RMS90 9.12 GeV [62.6%/sqrt(E)],



Barrel event (cos(theta[Q]) < 1/sqrt(2))


Mean 485.6 GeV RMS 43.7 GeV RMS90 27.6 GeV [124.%/sqrt(E)]

Not good yet – but algorithms not tuned at these energy A lot of improvement expected, clearly still a lot of work to be done!

Shower leakage: di-jet at 200 GeV

Shower leakage: di-jet at 500 GeV

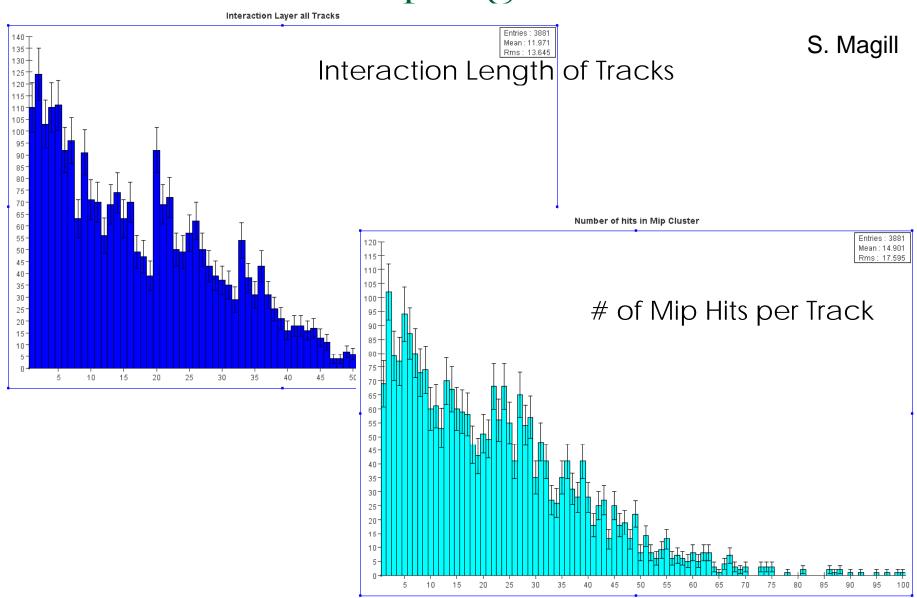
- Shower leakage affect PFA performance at high energy
- Events with heavy shower leakage could be identified by hits in the muon detectors
- Use hits in the muon detectors to estimate shower leakage?

Re-writing PFA according to Icsim template

- Motivation
 - Facilitate exchange with other PFA efforts
 - Check my algorithm from head to toe
 - Write intermediate Icio output file to save running time on the rest of the PFA (do not repeat clustering for each run)
- Current status
 - Program re-writing is done
 - Algorithm is fully modular
 - Followed Icsim template convention as closely as I can
 - However, used some extensions of standard interface
 - Some issues exist
 - Z-pole result is still different from old algorithm, but the difference is very small now
 - Some problems with the intermediate Icio file

Re-writing PFA according to Icsim template

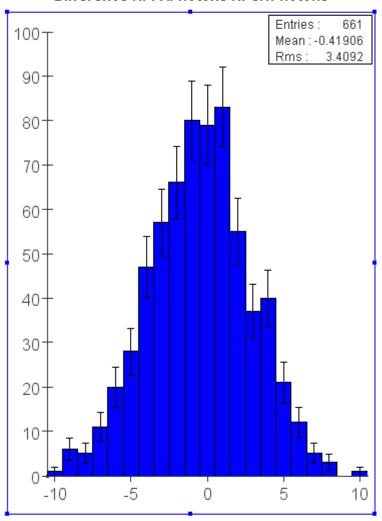
- Current status (continue)
 - Program performance
 - Overall running time is actually longer
 - 10k Z-pole events: 10hr => 14hr
 - If intermediate Icio successful, can save ~90% running time (by not repeating clustering each time)
 - Will upload to Icsim cvs, after solving some obvious issues

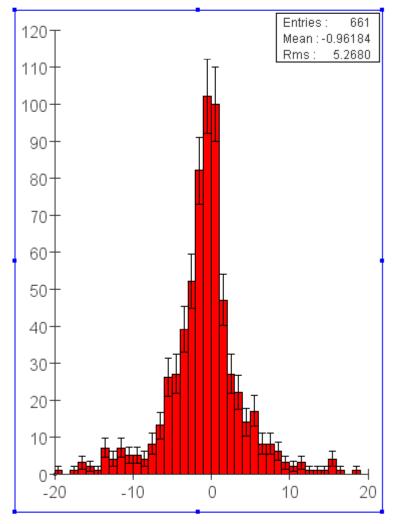

Future plans

- Finish up PFA tuning at Z-pole
- Concentrate on performance improvement at higher energies
- Shower leakage study using detector models with extended HCal
- Detector performance study with fully developed PFA

Algorithm Description III

- Track-linked mip segments (ANL)
 - Ind mip hits on extrapolated tracks, determine layer of first interaction based solely on cell density (no clustering of hits) ($\rightarrow \mu$ candidates)
- Photon Finder (SLAC)
 - use analytic longitudinal H-matrix fit to layer E profile with ECAL clusters as input ($\rightarrow \gamma$, π^0 , e^{+/-} candidates)
- Track-linked EM and HAD clusters (ANL, SLAC)
 - substitute for Cal objects (mips + non-EM ECAL shower clusters + HCAL calorimeter hits (or clusters))
 - reconstruct linked mip segments + clusters iterated in E/p
 - □ Analog or digital techniques in HCAL ($\rightarrow \pi^{+/-}$ candidates)
- Neutral Finder algorithm (SLAC, ANL)
 - □ cluster remaining CAL cells, merge, cut fragments (→ n, K⁰_L candidates)
- Jet algorithm
 - Reconstructed Particles used as input to jet algorithm, further analysis

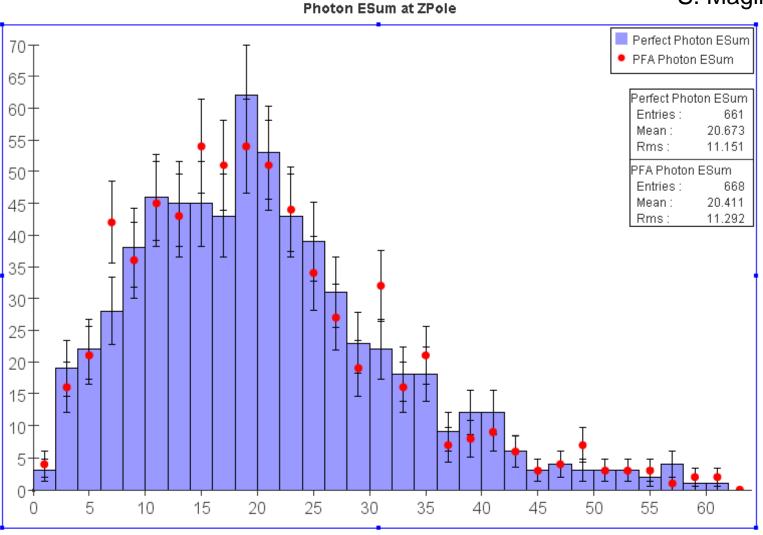

Track-Linked mip segments


Photon Finding

S. Magill

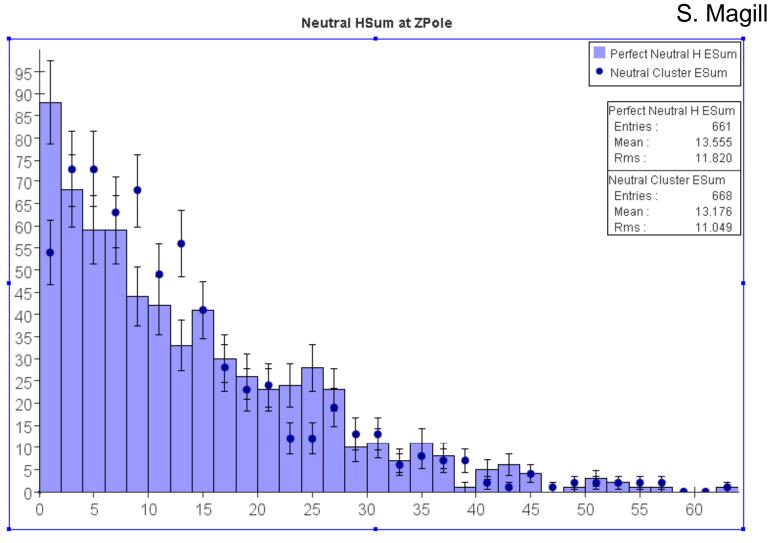
Difference NPFAPhotons NPerfPhotons

Difference PFAPhoE PerfPhoE



 δ Number

δEnergy


Photon Finding

Photon Energy Sum @ Z Pole

Neutral Hadrons

Neutral Hadron Energy Sum @ Z Pole

Reconstruction Framework

- Analyses shown here done within the general ALCPG simulation & reconstruction environment.
- Framework exists for the full reconstruction chain which allows modular implementation of most aspects of the analysis.
- Interfaces allow different clustering algorithms to be swapped in and alternate strategies to be studied.
- Goal is to facilitate cooperative development and reduce time & effort between having an idea and seeing the results.

24

Summary

- Individual Particle Reconstruction algorithms being developed with minimal coupling to specific detector designs.
 - Will allow full phase space of detector designs to be studied in a common framework.
- Finishing development of common infrastructure tools
 - Calibration method for detector models
 - Perfect PFA prescription
- Released Reconstruction Template
 - Enables e.g. Cluster algorithm substitution, CAL hit/cluster accounting
 - Migrating individual analyses into this framework
- Optimization & Standardization of reconstructors
 - Photon & muon finders fairly mature, close to release
- Analysis emphasis on dijet invariant mass resolution in physics events
 - □ Currently $e^+e^- \rightarrow ZZ \rightarrow (vv)$ (qq) (No jet combinatorics, uds) (2)
 - □ Results soon from $e^+e^- \rightarrow ZZ \rightarrow (qq) (qq) \& e^+e^- \rightarrow ZZ\nu\nu$, WW $\nu\nu$ (4)
- Plan to release "canned" physics analyses to reduce systematic uncertainties in e.g. jet-finding, combinatorics, constrained fits, ...
- Closing in on detector optimization using results.

Additional Information

- Icsim.org http://www.lcsim.org
- ILC Forum http://forum.linearcollider.org
- Wiki http://confluence.slac.stanford.edu/display/ilc/Home
- org.lcsim http://www.lcsim.org/software/lcsim
- Software Index http://www.lcsim.org/software
- Detectors http://www.lcsim.org/detectors
- LCIO http://lcio.desy.de
- SLIC http://www.lcsim.org/software/slic
- LCDD http://www.lcsim.org/software/lcdd
- JAS3 http://jas.freehep.org/jas3
- AIDA http://aida.freehep.org
- WIRED http://wired.freehep.org