CP-violating loop effects in the Higgs sector of the MSSM

Georg Weiglein

IPPP Durham

DESY, 06/2007

In collaboration with T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, K. Williams

- Introduction
- New results for Higgs masses, mixings and decays in the MSSM with complex phases
- Numerical analysis
- Conclusions

Introduction

MSSM Higgs potential contains two Higgs doublets:

$$V_{H} = m_{1}^{2} H_{1i}^{*} H_{1i} + m_{2}^{2} H_{2i}^{*} H_{2i} - \epsilon^{ij} (m_{12}^{2} H_{1i} H_{2j} + m_{12}^{2}^{*} H_{1i}^{*} H_{2j}^{*})$$

$$+ \frac{1}{8} (g_{1}^{2} + g_{2}^{2}) (H_{1i}^{*} H_{1i} - H_{2i}^{*} H_{2i})^{2} + \frac{1}{2} g_{2}^{2} |H_{1i}^{*} H_{2i}|^{2}$$

$$\begin{pmatrix} H_{11} \\ H_{12} \end{pmatrix} = \begin{pmatrix} v_{1} + \frac{1}{\sqrt{2}} (\phi_{1} - i\chi_{1}) \\ -\phi_{1}^{-} \end{pmatrix}$$

$$\begin{pmatrix} H_{21} \\ H_{22} \end{pmatrix} = e^{i\xi} \begin{pmatrix} \phi_{2}^{+} \\ v_{2} + \frac{1}{\sqrt{2}} (\phi_{2} + i\chi_{2}) \end{pmatrix}$$

Complex phases $\arg(m_{12}^2)$, ξ can be rotated away

 \Rightarrow Higgs sector is $\mathcal{CP}\text{-}conserving$ at tree level

\mathcal{CP} violation in the Higgs sector

Five physical states; tree level: h^0, H^0, A^0, H^{\pm}

- Complex parameters enter via (often large) loop corrections:
- $-\mu$: Higgsino mass parameter
- $-A_{t,b,\tau}$: trilinear couplings
- $-M_{1,2}$: gaugino mass parameter (one phase can be eliminated)
- $-m_{\tilde{g}}$: gluino mass
- $\Rightarrow CP$ -violating mixing between neutral Higgs bosons h_1 , h_2 , h_3

Lowest-order Higgs sector has two free parameters \Rightarrow choose $\tan \beta \equiv \frac{v_2}{v_1}$, $M_{\mathrm{H}^{\pm}}$ as input parameters

Impact of complex phases

Example: g_{hVV}^2 for h_1, h_2, h_3 : [M. Frank, S. Heinemeyer, W. Hollik, G. W. '03]

⇒ Complex phases can have large effects on Higgs couplings

CP-violating case (CPX scenario): LEP exclusion bounds

[LEP Higgs Working Group '06]

 \Rightarrow no lower limit on M_{h_1} : light SUSY Higgs not ruled out! sensitive dependence on m_t

- Suppressed coupling of light Higgs, h₁, to gauge bosons over wide regions of parameter space
- Second-lightest Higgs, h₂, may be within LEP reach (with reduced VVh₂ coupling), h₃ beyond LEP reach
- Large $BR(h_2 \rightarrow h_1h_1) \Rightarrow$ difficult final state

 \Rightarrow Precise prediction for $BR(h_2 \rightarrow h_1h_1)$ needed for analysis of Higgs exclusion bounds

How precisely does one need to know the MSSM Higgs sector predictions?

How precisely does one need to know the MSSM Higgs sector predictions?

Now:

LEP limits place important constraints on MSSM parameter space

Need precise theory predictions to map out allowed / excluded parameter regions

How precisely does one need to know the MSSM Higgs sector predictions?

Now:

LEP limits place important constraints on MSSM parameter space

Need precise theory predictions to map out allowed / excluded parameter regions

Future:

Want to confront predictions with experimental measurements

LHC: $\Delta M_{\rm h}^{\rm exp} \approx 0.2~{
m GeV}$, ILC: $\Delta M_{\rm h}^{\rm exp} \approx 0.05~{
m GeV}$ for a light SM-like Higgs

Theoretical uncertainties in the predictions for the observables in the MSSM Higgs sector

 Uncertainty from unknown higher-order corrections: Example: △M^{theo}_h ≈ 2–3 GeV, [*G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. W. '02*]
 [*S. Heinemeyer, W. Hollik, G. W. '06*]
 Will improve with recent 3-loop results [*S. Martin '07*]

Theoretical uncertainties in the predictions for the observables in the MSSM Higgs sector

- Uncertainty from unknown higher-order corrections: Example: $\Delta M_{\rm h}^{\rm theo} \approx 2-3 \ {\rm GeV}$, [G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. W. '02] [S. Heinemeyer, W. Hollik, G. W. '06] Will improve with recent 3-loop results [S. Martin '07]
 - ... and further results still to come before the ILC

Theoretical uncertainties in the predictions for the observables in the MSSM Higgs sector

- Uncertainty from unknown higher-order corrections: Example: △M^{theo}_h ≈ 2–3 GeV, [*G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. W. '02*]
 [*S. Heinemeyer, W. Hollik, G. W. '06*]
 Will improve with recent 3-loop results [*S. Martin '07*]
 ... and further results still to come before the ILC
- Parametric uncertainty induced by the experimental errors of the input parameters

Dominant effect: experimental error of $m_{\rm t}$

 \Rightarrow ILC will yield improvement by an order of magnitude

exp. error on m_t : $\approx 1 \text{ GeV}$ $\stackrel{\text{ILC} + \text{GigaZ}}{\longrightarrow}$

New results for Higgs masses, mixings and decays in the MSSM with complex phases

Complete one-loop results for masses and mixings with complex parameters

[M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. W. '06]

Two-loop $\mathcal{O}(\alpha_t \alpha_s)$ corrections [S. Heinemeyer, W. Hollik, H. Rzehak, G. W. '07]

Complete one-loop results for $\Gamma(h_2 \rightarrow h_1 h_1)$, $\Gamma(h_i \rightarrow f\bar{f})$ with complex parameters [K. Williams, G. W. '07]

Results obtained in Feynman-diagrammatic approach, previous results were based on renormalisation-group improved effective potential approach (→ program *CPsuperH*) [*A. Pilaftsis, C. Wagner '99*], [*M. Carena, J. Ellis, A. Pilaftsis, C. Wagner '00*], [*J. Lee et al. 03*]

Higher-order corrections in the MSSM Higgs sector with CP-violating phases

Mixing between h, H, A

⇒ loop-corrected masses obtained from propagator matrix

$$\Delta_{hHA}(p^2) = -\left(\hat{\Gamma}_{hHA}(p^2)\right)^{-1}, \quad \hat{\Gamma}_{hHA}(p^2) = i\left[p^2\mathbb{1} - \mathcal{M}_n(p^2)\right]$$

where

$$M_{n}(p^{2}) = \begin{pmatrix} m_{h}^{2} - \hat{\Sigma}_{hh}(p^{2}) & -\hat{\Sigma}_{hH}(p^{2}) & -\hat{\Sigma}_{hA}(p^{2}) \\ -\hat{\Sigma}_{hH}(p^{2}) & m_{H}^{2} - \hat{\Sigma}_{HH}(p^{2}) & -\hat{\Sigma}_{HA}(p^{2}) \\ -\hat{\Sigma}_{hA}(p^{2}) & -\hat{\Sigma}_{HA}(p^{2}) & m_{A}^{2} - \hat{\Sigma}_{AA}(p^{2}) \end{pmatrix}$$

$$\Rightarrow$$
 Higgs propagators: $\Delta_{ii}(p^2) = \frac{i}{p^2 - m_i^2 + \hat{\Sigma}_{ii}^{\text{eff}}(p^2)}$

Higher-order corrections in the MSSM Higgs sector with CP-violating phases

$$\hat{\Sigma}_{ii}^{\text{eff}}(p^2) = \hat{\Sigma}_{ii}(p^2) - i \frac{2\hat{\Gamma}_{ij}(p^2)\hat{\Gamma}_{jk}(p^2)\hat{\Gamma}_{ki}(p^2) - \hat{\Gamma}_{ki}^2(p^2)\hat{\Gamma}_{jj}(p^2) - \hat{\Gamma}_{ij}^2(p^2)\hat{\Gamma}_{kk}(p^2)}{\hat{\Gamma}_{jj}(p^2)\hat{\Gamma}_{kk}(p^2) - \hat{\Gamma}_{jk}^2(p^2)}$$

Complex pole \mathcal{M}^2 of each propagator is determined from

$$\mathcal{M}_i^2 - m_i^2 + \hat{\Sigma}_{ii}^{\text{eff}}(\mathcal{M}_i^2) = 0,$$

where

$$\mathcal{M}^2 = M^2 - iM\Gamma,$$

Expansion up to first order in Γ around M^2 :

$$M_i^2 - m_i^2 + \operatorname{\mathsf{Re}} \hat{\Sigma}_{ii}^{\operatorname{eff}}(M_i^2) + \frac{\operatorname{Im} \hat{\Sigma}_{ii}^{\operatorname{eff}}(M_i^2) \left(\operatorname{Im} \hat{\Sigma}_{ii}^{\operatorname{eff}}\right)'(M_i^2)}{1 + \left(\operatorname{\mathsf{Re}} \hat{\Sigma}_{ii}^{\operatorname{eff}}\right)'(M_i^2)} = 0$$

CP-violating loop effects in the Higgs sector of the MSSM, Georg Weiglein, DESY 06/2007 - p.11

Wave function normalisation for amplitudes with external Higgs bosons

Correct on-shell properties of the S matrix \Leftrightarrow finite wave-function normalisation factors

$$\sqrt{\hat{Z}_i}\left(\Gamma_i + \hat{Z}_{ij}\Gamma_j + \hat{Z}_{ik}\Gamma_k + \ldots\right)$$

where

$$\hat{Z}_{i} = \frac{1}{1 + \left(\operatorname{\mathsf{Re}} \hat{\Sigma}_{ii}^{\text{eff}}\right)'(M_{i}^{2})}$$
$$\hat{Z}_{ij} = \frac{\hat{\Sigma}_{ij}(M_{i}^{2}) \left(M_{i}^{2} - m_{k}^{2} + \hat{\Sigma}_{kk}(M_{i}^{2})\right) - \hat{\Sigma}_{jk}(M_{i}^{2})\hat{\Sigma}_{ki}(M_{i}^{2})}{\hat{\Sigma}_{jk}^{2}(M_{i}^{2}) - \left(M_{i}^{2} - m_{j}^{2} + \hat{\Sigma}_{jj}(M_{i}^{2})\right) \left(M_{i}^{2} - m_{k}^{2} + \hat{\Sigma}_{kk}(M_{i}^{2})\right)}$$

Leading two-loop QCD corrections

Leading $O(\alpha_t \alpha_s)$ corrections: 2-loop contrib. evaluated in limit of vanishing gauge couplings, external momentum: $p^2 \rightarrow 0$

Renormalisation:

- 2-loop renormalisation in the Higgs sector, independent parameters: $M_{\rm H^{\pm}}$, tan β
- 1-loop renormalisation in the t̃, b̃ sector, need also renormalisation of complex phase φ_{A_t}

$$\mathbf{M}_{\tilde{q}} = \begin{pmatrix} M_L^2 + m_q^2 + M_Z^2 c_{2\beta} (T_q^3 - Q_q s_{w}^2) & m_q X_q^* \\ m_q X_q & M_{\tilde{q}_R}^2 + m_q^2 + M_Z^2 c_{2\beta} Q_q s_{w}^2 \end{pmatrix}$$
with

$$X_q = A_q - \mu^* \kappa$$
, $\kappa = \{\cot\beta, \tan\beta\}$ for $q = t, b$

 \Rightarrow Mass eigenvalues $m_{\tilde{q}_1}^2$, $m_{\tilde{q}_2}^2$, mixing angle $\theta_{\tilde{q}}$, phase $\varphi_{\tilde{q}}$

Mass eigenvalues $m_{\tilde{q}_1}^2$, $m_{\tilde{q}_2}^2$ depend only on $|X_q|$

Effect of varying φ_{X_t} on the prediction for the lightest Higgs mass, one-loop corrections

Impact of the different sectors of the MSSM ($M_{H^{\pm}} = 150 \text{ GeV}$): [*M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. W. '06*]

⇒ Variation of φ_{X_t} leads to shift in M_{h_1} of up to 8 GeV Shift of ≈ 3 GeV from corrections beyond f/\tilde{f} loops CP-violating loop effects in the Higgs sector of the MSSM, Georg Weiglein, DESY 06/2007 – p.15 $\mathcal{O}(\alpha_t \alpha_s)$ corrections depend only on the phase combinations

 $\mu A_{\rm t} (m_{12}^2)^*$ and $A_{\rm t} M_3^*$

Phase of m_{12}^2 has been rotated away (see above) \Rightarrow Analyse the dependence on the phases of A_t (X_t) and M_3

Variation of φ_{A_t} for fixed μ , $\tan \beta$ \Rightarrow change of $|X_t| \Rightarrow$ change of stop masses

Variation of φ_{X_t}

 \Rightarrow change of A_t , stop masses stay the same

Dependence of prediction for M_{h_1} **on** φ_{A_t} : **one-loop vs. two-loop**

 \Rightarrow Two-loop corrections significantly enhance the effects of the complex phase φ_{A_t} , sizable effects for large $|A_t|$

CP-violating loop effects in the Higgs sector of the MSSM, Georg Weiglein, DESY 06/2007 - p.17

Dependence of prediction for M_{h_1} on φ_{X_t} : one-loop vs. two-loop

 \Rightarrow One-loop: very weak dependence on φ_{X_t} Two-loop: large change in phase dependence

CP-violating loop effects in the Higgs sector of the MSSM, Georg Weiglein, DESY 06/2007 - p.18

Reason for the large impact of the phase in the two-loop contribution

- Leading one-loop result in the limit $M_{\rm H^{\pm}} \gg M_{\rm Z}$ depends only on the absolute value $|X_{\rm t}| \equiv |A_{\rm t} - \mu^* / \tan \beta|$
- \Leftrightarrow only combination $\varphi_{A_{t}} + \varphi_{\mu}$ enters
- \Rightarrow weak dependence of one-loop result on φ_{X_t} dependence on φ_{A_t} mainly through $|X_t|$

Reason for the large impact of the phase in the two-loop contribution

- Leading one-loop result in the limit $M_{\rm H^{\pm}} \gg M_{\rm Z}$ depends only on the absolute value $|X_{\rm t}| \equiv |A_{\rm t} - \mu^* / \tan \beta|$
- \Leftrightarrow only combination $\varphi_{A_{t}} + \varphi_{\mu}$ enters
- \Rightarrow weak dependence of one-loop result on φ_{X_t} dependence on φ_{A_t} mainly through $|X_t|$

Two-loop level:

- ⇒ Gluino contributions introduce dependence on phase combination $A_t M_3^*$
- \Rightarrow Large modification of phase dependence

Effect of the gluino phase on the prediction for M_{h_1}

[S. Heinemeyer, W. Hollik, H. Rzehak, G. W. '07]

 $\Rightarrow \text{Sizable effects in the threshold region,} \\ m_{\tilde{g}} \approx m_{\tilde{t}_1} - m_t, \, m_{\tilde{g}} \approx m_{\tilde{t}_2} - m_t$

Dependence of $\mathrm{BR}(h_2 \rightarrow h_1 h_1)$ on φ_{A_t} :

Impact of generic 1-loop vertex correction

⇒ Very pronounced phase dependence, dominated by generic vertex corrections

$BR(h_2 \rightarrow h_1 h_1)$ in CPX scenario ($\varphi_{M_3} = 0$)

Full result vs. result with tree-level vertex vs. "improved Born approximation" used so far in *FeynHiggs*: [G. W., K. Williams '07]

\Rightarrow Generic vertex corrections have large impact on BR

Comparison of $BR(h_2 \rightarrow h_1h_1)$, CPX scen., $\varphi_{M_3} = 0$: New diagramm. result (left) vs. CPsuperH (right)

Comparison takes into account conversion of $|A_t|$ from on-shell scheme to \overline{DR} scheme [G. W., K. Williams '07]

 \Rightarrow Qualitative agreement, BR($h_2 \rightarrow h_1 h_1$) enhanced \Rightarrow Confirmation of "CPX holes"

Conclusions

• New results in MSSM Higgs sector with complex param.: Complete one-loop results for masses, mixings, $\Gamma(h_2 \rightarrow h_1 h_1)$, $\Gamma(h_i \rightarrow f\bar{f})$ + two-loop $\mathcal{O}(\alpha_t \alpha_s)$ corrections

Conclusions

- New results in MSSM Higgs sector with complex param.: Complete one-loop results for masses, mixings, $\Gamma(h_2 \rightarrow h_1 h_1)$, $\Gamma(h_i \rightarrow f\bar{f})$ + two-loop $\mathcal{O}(\alpha_t \alpha_s)$ corrections
- Complex phases can have large impact on Higgs phenomenology:
 - 2-loop contrib. yield large enhancement of phase dep.
 - large effect on $BR(h_2 \rightarrow h_1 h_1)$
 - Confirmation of "CPX holes"

Conclusions

- New results in MSSM Higgs sector with complex param.: Complete one-loop results for masses, mixings, $\Gamma(h_2 \rightarrow h_1 h_1)$, $\Gamma(h_i \rightarrow f\bar{f})$ + two-loop $\mathcal{O}(\alpha_t \alpha_s)$ corrections
- Complex phases can have large impact on Higgs phenomenology:
 - 2-loop contrib. yield large enhancement of phase dep.
 - large effect on $BR(h_2 \rightarrow h_1 h_1)$
 - Confirmation of "CPX holes"
- Outlook:
 - Implementation of new results into FeynHiggs
 - Detailed comparison with CPsuperH