New Physics effect on the Top-Yukawa coupling

KOJI TSUMURA (KEK)

in collaboration with Shinya Kanemura (U-Toyama), Koichi Matsuda (Tsinghua-U), Daisuke Nomura (KEK)

> LCWS07 and ILC07 DESY, Hamburg, May 30- June 3

> > This talk is based on PRD74,076007(2006)

Plan of talk

- Introduction
 - Top-Yukawa coupling at a LC
- Effective Theory
 - Dimension-six operators as a new physics
 - Constraints on dim.6 ops.
- New physics effect on the Top-Yukawa coupling at a LC
- Summary

Introduction

Why Top-Yukawa coupling

- Why the Yukawa coupling ?
 - Gauge interactions are well examined.
 - To understand the mass generation mechanism. It is necessary to measure mass and Yukawa coupling separately.
- Why the top ?
 - Large Y_t is essentially important at future colliders.
 - Why the top exceptionally heavy ?
 - Are the top and EWSB related ?

Top-quark might have new physics !?

Top-Yukawa coupling at a LC

• For lighter Higgs boson (SM or SUSY like scenario)

- For lighter Higgs boson (SM or SUSY like scenario)
 ee -> ttH associate production
- For $\sqrt{s} > m_H + 2m_t m_H \lesssim 150 \text{GeV}$ nasses - $m_H > 2m_t$ nu $\frac{2m_t}{T} > m_H > 2m_W$ e^{-t}

Effective theory description

Dimension-six operators as a new physics

Effective theory

• Eff. Lagrangian below the new physics scale

$$\mathcal{L}^{\text{eff}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{dim.6}} + \mathcal{L}_{\text{dim.8}} + \cdots$$

Buchmuller et. al in NPB268, 621 (1986)

$$\mathcal{L}_{dim.6} = \frac{1}{\Lambda^2} \sum_i C_i \mathcal{O}_i$$

- The non-SM interactions are characterized by dim.6 gauge invariant operators at leading order.
- There are so many dim.6 operators. We introduce these dim.6 ops. for 3rd generation quarks.
 - Bottom quark operators are strongly constrained by Z→bb.

Dimension-six top-quark operators

$$\mathcal{O}_{t1} = \left(\Phi^{\dagger} \Phi - \frac{v^2}{2} \right) \left(\bar{q}_L t_R \tilde{\Phi} + \text{h.c.} \right)$$

$$\mathcal{O}_{t2} = i (\Phi^{\dagger} D_\mu \Phi) \bar{t}_R \gamma^{\mu} t_R + \text{h.c.}$$

$$\mathcal{O}_{t3} = i (\tilde{\Phi}^{\dagger} D_\mu \Phi) \bar{t}_R \gamma^{\mu} b_R + \text{h.c.}$$

$$\mathcal{O}_{Dt} = (\bar{q}_L D_\mu t_R) \left(D^\mu \tilde{\Phi} \right) + \text{h.c.}$$

$$\mathcal{O}_{tW\Phi} = (\bar{q}_L \sigma^{\mu\nu} \vec{\tau} t_R) \tilde{\Phi} \vec{W}_{\mu\nu} + \text{h.c.}$$

$$\mathcal{O}_{tB\Phi} = (\bar{q}_L \sigma^{\mu\nu} t_R) \tilde{\Phi} B_{\mu\nu} + \text{h.c.}$$

Origin of dim.6 operators

• MSSM PRD69,115007 Feng, Li, Maalampi

$$\mathcal{L}_{dim.6} = \frac{1}{M_A^2} \sum_i C_i \mathcal{O}_i$$

$$C_{t1} = \frac{g^2 + {g'}^2}{2} \operatorname{Re}(h_U^{33}) s_\beta c_\beta^2 (c_\beta^2 - s_\beta^2), \ C_{Dt} = \cdots$$

LCWS07 May 30-June 3

Experimental limits on dim.6 ops.

- Direct search K. i. Hikasa et al PRD58, 114003 (1998)
 - No experimental bound for C_{t1}
 - C_{Dt} an be constrained by Tevatron.

 $|C_{Dt}| \leq \mathbf{for}$

$$\int \mathcal{L} dt = 100 \text{fb}^{-1}$$

Experimental limits

- G. J. Gounaris et al PRD 52, 451 (1995)
- Precision data S. Kanemura, D. Nomura. KT PRD74, 076007(2006)
 - $C_{t2,t3,Dt,t}$ and give oblique corrections. It can be allowed in the SM-like situation with heavier Higgs bosons.

Perturbative unitarity

• Amplitudes G. J. Gounaris et al Z. Phys. C 76, 333 (1997)

$$i\mathcal{M}^{t\bar{t}\to t\bar{t}} \sim \frac{i}{s-m_h^2} \left(\frac{m_t}{v} - \frac{v^2}{\sqrt{2}} \frac{C_{t1}}{\Lambda^2} + \frac{s}{\sqrt{2}} \frac{C_{Dt}}{\Lambda^2} \right)^2 \bar{v} u \bar{u} v + \cdots$$
$$i\mathcal{M}^{t\bar{t}\to hh} \sim \frac{1}{s-m_h^2} \left(\frac{m_t}{v} - \frac{v^2}{\sqrt{2}} \frac{C_{t1}}{\Lambda^2} + \frac{s}{\sqrt{2}} \frac{C_{Dt}}{\Lambda^2} \right) (-i\lambda) \bar{u} v 3! + i \frac{C_{t1}}{\sqrt{2}} \frac{v}{\Lambda^2} \bar{u} v 2!$$

– Imposing unitarity @ $\sqrt{s} = \Lambda$

$$C_{t1}| \le 8\pi \left(\frac{\Lambda}{v}\right), \ |C_{Dt} + \frac{\sqrt{2m_t}}{v}| \le \sqrt{8\pi}$$

Considering 2-body scattering channels (hh, W_L, W_L, Z_LZ_L, and t anti-t), chirality and color factors.

$$|C_{t1}| \le \frac{16\pi}{3\sqrt{2}} \left(\frac{\Lambda}{v}\right)$$
$$- 6.2 \le C_{Dt} \le 10.2$$

Ci	Set A	Set B	Set C	Set D	Set E
C _{t1}	0	$i \frac{16\frac{1}{4}}{3}\frac{\pi}{2}v$	+ $\frac{16^{\frac{1}{4}}}{3^{\frac{1}{2}}}\frac{\pi}{v}$	0	0
C _{Dt}	0	0	0	+ 10:2	i 6:2

We will use above sample values of dim.6 couplings.

LCWS07 May 30-June 3

 Operators t1 and Dt only contribute to the Top-Yukawa coupling

$$\begin{split} \mathcal{O}_{t1} &= \left(\Phi^{\dagger} \Phi - \frac{v^2}{2} \right) \left(\bar{q}_L t_R \tilde{\Phi} + \text{h.c.} \right) \\ \mathcal{O}_{t2} &= i (\Phi^{\dagger} D_\mu \Phi) \bar{t}_R \gamma^\mu t_R + \text{h.c.} \\ \mathcal{O}_{t3} &= i (\Phi^{\dagger} D_\mu \Phi) \bar{t}_R \gamma^\mu b_R + \text{h.c.} \\ \mathcal{O}_{Dt} &= (\bar{q}_L D_\mu t_R) \left(D^\mu \tilde{\Phi} \right) + \text{h.c.} \\ \mathcal{O}_{tW\Phi} &= (\bar{q}_L \sigma^{\mu\nu} \tau t_R) \tilde{\Phi} \vec{W}_{\mu\nu} + \text{h.c.} \\ \mathcal{O}_{tB\Phi} &= (\bar{q}_L \sigma^{\mu\nu} t_R) \tilde{\Phi} B_{\mu\nu} + \text{h.c.} \end{split}$$

Effect of dim.6 on Higgs decay

- Eff. Top-Yukawa $y_t^{\text{eff}}(-q^2, \Lambda) = y_t^{\text{SM}} v^2 \frac{C_{t1}}{\Lambda^2} q^2 \frac{C_{Dt}}{2\Lambda^2}$
 - $-y_t^{SM}$ is restricted by m_t .
 - Dim.6 couplings are only constrained by unitarity.

New physics effect on the Top-Yukawa coupling at a LC

ee -> ttH Associate production

• For lighter Higgs boson

PRD61,015006 Han et al

 ee -> ttH associate production can be a useful probe to constrain the new physics effect on dim.6 Top-Higgs interaction.

ee -> ttH associate production

PRD61,015006 Han et al

- The X sections of the process ee -> ttH as a function of CM energy \sqrt{s} for $m_h = 100, 120, 140 \text{ GeV}$
 - The dashed curves are the SM predictions.
- New physics effect can be Dt easily observed in the ee -> ttH process.

ee -> ttH associate production

PRD61,015006 Han et al

- m_H dependence of the X sections of the process ee -> ttH with operators \mathcal{O}_{t1} . \mathcal{O}_{Dt}
- When m_H becomes large, the X sections and its deviation from the SM are quickly decrease.

How to study the top-Yukawa coupling for relatively heavy m_H?

Top-Yukawa coupling at a LC

Kanemura, Nomura, KT PRD74,076007(2006)

In this talk, we examine the possibility to study the new physics effect on the top-Yukawa coupling in the W-boson fusion process for large m_{H} .

- For heavier or intermediate Higgs masses $m_H > 2m_t$ $2m_t > m_H > 2m_W$

Kanemura, Nomura, KT PRD74,076007(2006)

- Cutoff scale \bigwedge set to be 1TeV.
- Dim.6 couplings can change the cross sections by a factor.
- Since Higgs decay width grow wider, X sections can_fpe_H =500GeV enhanced not only the sub-process energy equal to m_H pole.

Ci	Set A	Set B	Set C	Set D	Set E
C _{t1}	0	$i \frac{16\frac{14}{2}}{3}\frac{m}{2}$	+ $\frac{16^{\frac{1}{4}}}{3}\frac{\pi}{2}$	0	0
C _{Dt}	0	0	0	+ 10:2	i 6:2

- - S-matrix for W₁ scattering is equivalent to those for NG-boson up to m/E. Dotted curves indicate the $\omega\omega \to t\bar{t}$ process

$$\mathcal{M}(W_L W_L \to t\bar{t}) \simeq \mathcal{M}(\omega\omega \to t\bar{t}) + \mathcal{O}(m_W/\sqrt{s})$$

- We only impose cut $M_{t\bar{t}} \ge 400 {
 m GeV}$
- The total cross section can be enhanced by factor of 2 in the range $400 {\rm GeV} \le m_H \le 500 {\rm GeV}$
- The effects of those of . become large for heavier Higgs compare to \mathcal{O}_{Dt} \mathcal{O}_{t1}

 C_{t1}

|C_{Dt}|

0

0

 W^+

0

 $i \frac{16\frac{14}{2}}{3}\frac{m}{2} + \frac{16\frac{14}{2}}{3\frac{1}{2}}\frac{m}{v}$

0

0

0

+ 10:2 | 6:2

LCWS07 May 30-June 3

KOJI TSUMURA

25

Summary

Summary

 We discuss the W-fusion with the non-SM Y_t which are characterized by dim.6 operators.

$$y_t^{\text{eff}}(-q^2, \Lambda) = y_t^{\text{SM}} - v^2 \frac{C_{t1}}{\Lambda^2} - q^2 \frac{C_{Dt}}{2\Lambda^2}$$

- They are constrained by EXP. data and unitarity.
 - Our calculations have been checked by ET.
 - Dim.6 couplings can enhance cross sections.

Conclusion

Dim.6 couplings can enhance cross sections, the effect can be observed in the WBF for heavier Higgs bosons.

Thank you for your listening !!

Feynman rules

• Feynman rules for dimension-six operators.

Origin of dim.6 ops.

LCWS07 May 30-June 3

LCWS07 May 30-June 3

Higgs decay branching ratios

• Higgs decay branching ratio in the SM

W boson fusion (WBF)

- At the high energy LC, W-fusion is an important probe.
- A few thousands of top-pair events produced via vector boson fusion.
- BGs have been studied.

Effective W approximation (EWA)

W-bosons are treated as a parton which are emitted by initial electron and positron.

$$\sigma(e^-e^+ \to W^-W^+\nu\bar{\nu} \to t\bar{t}\nu\bar{\nu};\sqrt{s})$$

$$= \int_{m_W/E}^1 dx_1 \int_{m_W/E}^1 dx_2 f_{e/W_\lambda}(x_1) f_{e/W_{\lambda'}}(x_2) \sigma(W^-W^+ \to t\bar{t};\sqrt{s})$$

• At the leading order, parton distributions for W_L consists the process $e^-e^+ \rightarrow H\nu\bar{\nu}$ ximatio $p_T \ll \sqrt{s}$

- Dotted curves are calculated by using the package CalcHEP.A. Pukhov, hep-ph/0412191
 - The EWA results agree with those of CalcHEP in about 20-30 % error for heavier Higgs boson.

At the ILC with $\sqrt{s} = 500 \text{GeV}$, and events are expected. Statistical error is less than 10%.

Amplitudes with dim.6 couplings for WW scattering

$$\mathcal{M}_{h} = \frac{2m_{W}^{2}/v}{s - m_{h}^{2} + im_{h}\Gamma_{h}} \left(\frac{m_{t}}{v} - \frac{C_{t1}}{\sqrt{2}} \frac{v^{2}}{\Lambda^{2}} + \frac{C_{Dt}}{2\sqrt{2}} \frac{s}{\Lambda^{2}} \right) (e_{\lambda} \cdot \bar{e}_{\bar{\lambda}}) \bar{u}v.$$

$$\mathcal{M}_{\gamma} = -\frac{iQ_{t}e^{2}}{s} A_{\lambda\bar{\lambda}}^{\mu} \bar{u}\gamma_{\mu}v.$$

$$\mathcal{M}_{Z} = -\frac{2im_{W}^{2}/v^{2}}{s - m_{Z}^{2}} A_{\lambda\bar{\lambda}}^{\mu} \bar{u} \left[\gamma_{\mu}(v_{t} + a_{t}\gamma_{5}) - iK_{\mu} \frac{C_{Dt}}{\Lambda^{2}} \frac{v}{2\sqrt{2}} \right] v.$$

$$\mathcal{M}_{b} = -\frac{2im_{W}^{2}/v^{2}}{u - m_{b}^{2}} e_{\lambda}^{\mu} \bar{e}_{\lambda}^{\nu} \bar{u} \left[\left(\gamma_{\nu} - i\frac{C_{Dt}}{\sqrt{2}} \frac{v}{\Lambda^{2}} k_{\nu} \right) P_{L} \gamma_{\rho} (p - k')^{\rho} P_{R} \left(\gamma_{\mu} + i\frac{C_{Dt}}{\sqrt{2}} \frac{v}{\Lambda^{2}} p_{\mu} \right) \right] v.$$

$$A^{\mu}_{\lambda\bar{\lambda}} = (e_{\lambda} \cdot \bar{e}_{\bar{\lambda}})P^{\mu} + 2(e_{\lambda} \cdot q)\bar{e}^{\mu}_{\bar{\lambda}} - 2(\bar{e}_{\bar{\lambda}} \cdot q)e^{\mu}_{\lambda}$$

LCWS07 May 30-June 3

Amplitudes with dim.6 couplings (NGbosons)

$$\begin{aligned} \mathcal{M}_{\times} &= -\frac{C_{t1}}{\Lambda^2} \frac{v}{\sqrt{2}} \bar{u}v. \\ \mathcal{M}_h &= \frac{2\lambda v}{s - m_h^2 + im_h \Gamma_h} \left(\frac{m_t}{v} - \frac{C_{t1}}{\sqrt{2}} \frac{v^2}{\Lambda^2} + \frac{C_{Dt}}{2\sqrt{2}} \frac{s}{\Lambda^2} \right) \bar{u}v. \\ \mathcal{M}_\gamma &= -\frac{iQ_t e^2}{s} P^{\mu} \bar{u} \gamma_{\mu} v. \\ \mathcal{M}_Z &= -\frac{2im_Z^2/v^2}{s - m_Z^2} A^{\mu}_{\lambda\bar{\lambda}} \bar{u} \left[\gamma_{\mu} (v_t + a_t \gamma_5) - iK_{\mu} \frac{C_{Dt}}{\Lambda^2} \frac{v}{2\sqrt{2}} \right] v. \\ \mathcal{M}_b &= -\frac{2i}{u - m_b^2} e^{\mu}_{\lambda} \bar{e}^{\nu}_{\bar{\lambda}} \bar{u} \left[\left(\frac{m_t}{v} + \frac{C_{Dt}}{\sqrt{2}\Lambda^2} p' \cdot k \right) P_L \gamma_{\rho} (p - k')^{\rho} P_R \left(\gamma_{\mu} + \frac{C_{Dt}}{\sqrt{2}\Lambda^2} p \cdot k' \right) \right] v. \end{aligned}$$

$$A^{\mu}_{\lambda\bar{\lambda}} = (e_{\lambda} \cdot \bar{e}_{\bar{\lambda}})P^{\mu} + 2(e_{\lambda} \cdot q)\bar{e}^{\mu}_{\bar{\lambda}} - 2(\bar{e}_{\bar{\lambda}} \cdot q)e^{\mu}_{\lambda}$$

$$\overset{\omega^{+}}{\underset{t}{\overset{}}} \overset{t}{\underset{\omega^{-}}{\overset{}}} \overset{\omega^{+}}{\underset{t}{\overset{}}} \overset{t}{\underset{\omega^{-}}{\overset{}}} \overset{\omega^{+}}{\underset{t}{\overset{}}} \overset{\tau}{\underset{\omega^{-}}{\overset{}}} \overset{\omega^{+}}{\underset{\omega^{-}}{\overset{}}} \overset{t}{\underset{\omega^{-}}{\overset{}}} \overset{\omega^{+}}{\underset{t}{\overset{}}} \overset{\tau}{\underset{\omega^{-}}{\overset{}}} \overset{\tau}{\underset{t}{\overset{}}} \overset{\omega^{+}}{\underset{\omega^{-}}{\overset{}}} \overset{\tau}{\underset{\omega^{-}}{\overset{}}} \overset{\omega^{+}}{\underset{t}{\overset{}}} \overset{\tau}{\underset{\omega^{-}}{\overset{}}} \overset{\tau}{\underset{\omega^{-}}{\overset{}}} \overset{\tau}{\underset{\omega^{-}}{\overset{}}} \overset{\tau}{\underset{\omega^{-}}{\overset{}}} \overset{\tau}{\underset{\omega^{-}}{\overset{}}} \overset{\omega^{+}}{\underset{\omega^{-}}{\overset{}}} \overset{\tau}{\underset{\omega^{-}}{\overset{\omega^{+}}{\underset{\omega^{-}}{\overset{}}}} \overset{\tau}{\underset{\omega^{-}}{\overset{\omega^{+}}{\underset{\omega^{-}}{\overset{}}}} \overset{\tau}{\underset{\omega^{-}}{\overset{\omega^{+}}{\underset{\omega^{-}}{\overset{}}}} \overset{\tau}{\underset{\omega^{-}}{\overset{\omega^{+}}{\underset{\omega^{-}}{\overset{}}}} \overset{\tau}{\underset{\omega^{-}}{\overset{\omega^{+}}{\underset{\omega^{-}}{\overset{}}}} \overset{\tau}{\underset{\omega^{-}}{\overset{\omega^{+}}{\underset{\omega^{-}}{\overset{\omega^{+}}{\underset{\omega^{-}}{\overset{}}}} \overset{\tau}{\underset{\omega^{-}}{\overset{\omega^{+}}{\underset{\omega^{-}}{\overset{\omega^{+}}{\underset{\omega^{-}}{\overset{\omega^{+}}{\underset{\omega^{-}}{\overset{\omega^{+}}{\underset{\omega^{-}}{\overset{\omega^{+}}{\underset{\omega^{-}}{\overset{\omega^{+}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\overset{\omega^{+}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\overset{\omega^{+}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\overset{\omega^{+}}{\underset{\omega^{-}}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}{\underset{\omega^{-}}}{\underset{\omega^{-}}{\underset{\omega^{-}}}{\underset{\omega^{-}}{\underset{\omega^{-}}}{\underset{\omega^{-}}}{\underset{\omega^{-}}{\underset{\omega^{-}}}{\underset{\omega^{-}}}{\underset{\omega^{-}}}{\underset{\omega^{-}}}{\underset{\omega^{-}}}{\underset{\omega^{-}}}{\underset{\omega^{-}}{\underset{\omega^$$

LCWS07 May 30-June 3

Sub-process X section vs dim.6 couplings

• Cross sections for the sub-process $W^-W^+ \rightarrow t\bar{t}$

- Dim.6 coupling can give negative contributions.

LCWS07 May 30-June 3

Equivalence theorem

- Our calculations can be checked by equivalence theorem.
 - S-matrix for longitudinally polarized W boson scattering is equivalent to those for NG-boson up to mass/energy.

$$\mathcal{M}(W_L W_L \to t\bar{t}) \simeq \mathcal{M}(\omega\omega \to t\bar{t}) + \mathcal{O}(m_W/\sqrt{s})$$

• BRS identity
$$\partial^{\mu}W^{\pm}_{\mu} - im_{W}\omega^{\pm} = 0$$

• Equivalence between longitudinal pol. and scalar pol. at high energies.

$$e_{S}^{\mu} = \frac{1}{m_{W}} p^{\mu} = \gamma_{W}(1, 0, 0, \beta_{W}), \ e_{L}^{\mu} = \gamma_{W}(\beta_{W}, 0, 0, 1)$$
$$\gamma_{W} = \frac{\sqrt{s}}{2m_{W}}, \beta_{W} = \sqrt{1 - \frac{4m_{W}^{2}}{s}}$$

LCWS07 May 30-June 3

Unitarity cancellation

- In the SM, the amplitude for WW scattering does not divergent at high energies due to unitarity cancellation.
- The effects of dimension-six operator $ra\mathcal{O}_{Dt}$ grow higher energy.
- However, the SM-like unitarity cancellation can take place, the total cross section is stabilized up to the cutoff scale.

Tot.X section vs dim.6 couplings

• Total cross section for the process

New Physics effect on the Top-Yukawa coupling

- WBF process with the non-SM Y_t which are characterized by dim.6 operators is discussed.
- They are constrained by EXP. data and unitarity. \mathcal{O}_t

 Dim.6 couplings can enhance cross sections, the effect can be observed in the WBF. $A = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $A = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 400 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 100 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 100 \text{GeV}$ $C = \sqrt{s} = 1 \text{TeV}, M_{\text{tt}} \ge 100 \text{GeV}$