Track-Based Particle Flow

Outline:

- Introduction
- Details of the Algorithm
- Performance of Track-Based Particle Flow
- Conclusions and Outlook

Introduction

Goal for precision physics:

- Jet-Energy Resolution $0.30/\sqrt{E_{ij}}$ in hadronic decays of Z⁰ and W^{+/-}
- \rightarrow corresponds to a boson mass resolution of approx. Γ_{ZM}
- 'Particle Flow Concept' is able to reach this goal

Particle Flow Algorithms for LDC (Marlin/MarlinReco):

- 1. Wolf: $\Delta E/E \approx 0.53/\sqrt{E}$ for $Z^0 \rightarrow uds$ for $E_{jet} = 45 \text{ GeV}$
- 2. PandoraPFA: $\Delta E/E \approx 0.30/\sqrt{E}$ for $Z^0 \rightarrow$ uds up to $E_{let} = 100 \text{ GeV}$
- 3. TrackBased PFlow: $\Delta E/E \approx 0.41/\sqrt{E}$ for $Z^0 \rightarrow$ uds for $E_{jet} = 45$ GeV

'Philosophy' of TrackBased PFlow:

- tracking system offers the most accurate measurement in detector
- start from tracks, use as much track information as possible (extrapolation, direction, momentum, dE/dx, PID, ...)
- try to establish a modular track-based PFlow algorithm in Marlin
- → base on modules and experience made with Wolf (started mid/end 2006)

New Modules

Photon Finding

Tracking

Tracking

Track Extrapolation

Track Extrapolation

 Track parameters might give a 'bad' extrapolation into the Calorimeter

Algorithm:

- take the outermost n Tracker hits (w.r.t path-length)
- fit trajectory on these hits
- at the moment done with a simple helix model (w/o energy loss, multiple scattering, ...)

Technicalities:

- based on the Trajectory interface in MarlinUtil
- fitting based on GSL using canonical track parametrisation
- more general fitting module for different Trajectory 'models' needed

Algorithm:

 put cone-like tube around extrapolated trajectory

- put cone-like tube around extrapolated trajectory
- cut calorimeter hits outside cone-like tube

- put cone-like tube around extrapolated trajectory
- cut calorimeter hits outside cone-like tube
- project all hits on trajectory

- put cone-like tube around extrapolated trajectory
- cut calorimeter hits outside cone-like tube
- project all hits on trajectory
- calculate path length on trajectory for all hits

- put cone-like tube around extrapolated trajectory
- cut calorimeter hits outside cone-like tube
- project all hits on trajectory
- calculate path length on trajectory for all hits

- put cone-like tube around extrapolated trajectory
- cut calorimeter hits outside cone-like tube
- project all hits on trajectory
- calculate path length on trajectory for all hits
- sort hits by their path lengths

- put cone-like tube around extrapolated trajectory
- cut calorimeter hits outside cone-like tube
- project all hits on trajectory
- calculate path length on trajectory for all hits
- sort hits by their path lengths
- assign path length and distance to each hit

Algorithm:

 put two cylindrical tubes around extrapolated trajectory

- put two cylindrical tubes around extrapolated trajectory
- take first hit according to its path length and add it to the MIP stub if it is located inside the inner cylindrical tube

- put two cylindrical tubes around extrapolated trajectory
- take first hit according to its path length and add it to the MIP stub if it is located inside the inner cylindrical tube
- take the next hit and discard it if it is located outside the outer tube
- amplitude information can be taken into account (MIP like)

- put two cylindrical tubes around extrapolated trajectory
- take first hit according to its path length and add it to the MIP stub if it is located inside the inner cylindrical tube
- take the next hit and discard it if it is located outside the outer tube
- amplitude information can be taken into account (MIP like)
- repeat this procedure for all hits until a hit outside the inner and inside the outer cylinder tube is found ('veto-cylinder')

- put two cylindrical tubes around extrapolated trajectory
- take first hit according to its path length and add it to the MIP stub if it is located inside the inner cylindrical tube
- take the next hit and discard it if it is located outside the outer tube
- amplitude information can be taken into account (MIP like)
- repeat this procedure for all hits until a hit outside the inner and inside the outer cylinder tube is found ('veto-cylinder')
- → stop the MIP stub finding
- take the projection of the last hit collected for the MIP stub as a start point for clustering
- take the direction (tangent) of this point as a start direction for clustering

Assign MIP Stub

Assign MIP Stub

Clustering

Clustering

Properties of Clusters

- calculate Center of Gravity (CoG) for each cluster (+)
- calculate start and end hit for each cluster (+)
- simply smallest and largest path length of Calorimeter Hit on trajectory/helix
- these properties are assigned to each cluster

Assign Clusters to Track

Assign Clusters to Track

assign Cluster to track if

- distance between end point of cluster i to start point of cluster j is smaller than a given limit
- limit depends on sampling fraction
- distance of CoG to extrapolated track is smaller than a given limit
- some more geometrical conditions

'Reassign' Clusters

'Reassign' Clusters

assign additional Clusters if

- distance of cluster is smaller than a certain limit
- $|E_1 + E_2 E_{Track}| < 3 \sigma_E$
- very simple at the moment

Particle ID

Particle ID

Charged Particle reconstructed

Remove 'Charged' Calorimeter Hits

Clustering on Neutral Hits

Clustering on Neutral Hits

Particle ID for Neutrals

Particle ID for Neutrals

Neutral Particle reconstructed

Performance of Track-Based PFlow

some first results for Z \rightarrow uds @ 91.2 GeV, cos(θ) < 0.8, LDC00Sc, R(1690mm), L(2730mm):

Performance of Track-Based PFlow

some first results for Z \rightarrow uds @ 91.2 GeV, cos(θ) < 0.8, LDC00Sc, R(1690mm), L(2730mm):

Conclusions and Outlook

Conclusions:

- Track-Based Particle Flow is evolving, **improvements** made since Valencia/Orsay
- performance exceeds performance of Wolf but still (significantly) worse than PandoraPFA
 - → algorithm is far perfect and not optimised in any direction (processing time)
 - → relatively 'young' approach, work in ongoing
- new modules (Photon finding and cluster 'reassignment') and bug-fixes since Orsay
- initial version of a Track-Based Particle Flow available in Marlin (in MarlinReco cvs)
- → first attempt to use it for higher energies (M. Faucci Giannelli and K. Wichmann)
- gain understanding of 'intrinsic' problems / properties of Particle Flow algorithms in general
- <u>need</u> multiple/different Particle Flow approaches to disentangle detector and algorithm effects on the reconstruction/physics performance

Outlook:

- go for $30\%/\sqrt{E_{iet}}$ @ 91.2 GeV first, then address higher energies
- follow the path given by PandoraPFA, do detector optimisation studies and compare results
- study sub-structure of hadronic showers (e.m., hadr. part) in Calice physics prototype
 - → apply results to 'clustering' of hadronic energy in the Track-Bases Particle Flow

inputs / ideas / discussions are welcome

backup slides ...

Details on MIP stub finding

Comparison with MC:

- efficiency and purity vs. p_{t} and $cos(\theta)$:
- overall efficiency >90%, overall purity >90%

51

1. tracking (Silicon and TPC)

- 1. tracking (Silicon and TPC)
- 2. find photon candidates

- 1. tracking (Silicon and TPC)
- 2. find photon candidates
- 3. extrapolate tracks into Calorimeter
 - different models, with and w/o energy loss, multiple scattering, ...
 - dedicated Geometry description needed

- 1. tracking (Silicon and TPC)
- 2. find photon candidates
- 3. extrapolate tracks into Calorimeter
 - different models, with and w/o energy loss, multiple scattering, ...
 - dedicated Geometry description needed
- 4. assign MIP stub to track, find muons

- 1. tracking (Silicon and TPC)
- 2. find photon candidates
- 3. extrapolate tracks into Calorimeter
 - different models, with and w/o energy loss, multiple scattering, ...
 - dedicated Geometry description needed
- 4. assign MIP stub to track, find muons
- 5. clustering (ECAL and HCAL)
 - variable, depending on track and photon candidates
 - → different algorithms

- 1. tracking (Silicon and TPC)
- 2. find photon candidates
- 3. extrapolate tracks into Calorimeter
 - different models, with and w/o energy loss, multiple scattering, ...
 - dedicated Geometry description needed
- 4. assign MIP stub to track, find muons
- 5. clustering (ECAL and HCAL)
 - variable, depending on track and photon candidates
 - → different algorithms
- 6. particle ID for $e^{+/-}$, $h^{+/-}$

- full software chain (put in tracks and calorimeter hits, get out reconstructed particles)
- more or less modular approach
- first results **only** for $Z^0 \rightarrow uds @ 91.2 \text{ GeV}$