Scintillator-Tungsten ECAL testbeam "first impressions"

Daniel Jeans (Kobe University) for the GLD-CAL group & the CALICE collaboration

- Scintillator strip Tungsten ECAL prototype
- test beam @ DESY positron beam Feb-Mar 2007
- very preliminary results

SCECAL test module

scintillator layers: 9 x 2 strips

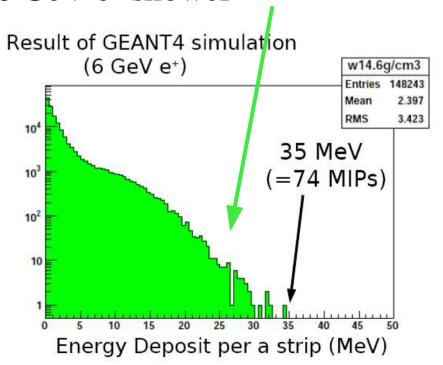
(4.5cm x 1cm x 3mm)

absorber: 3.5mm

tungsten/cobalt(12%)/carbon(0.5%)

1mm gap for readout cables

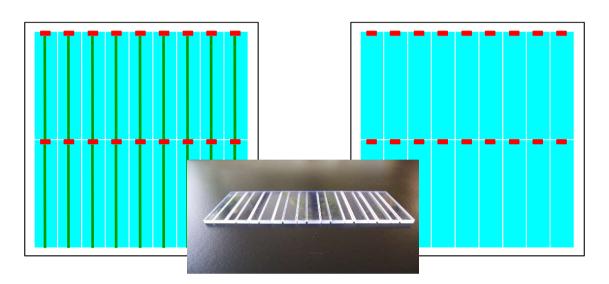
effective Moliere radius ~ 21 mm



test-bench results

from test-bench measurements, expect MPPC to detect ~ 21 photons/MIP

from GEANT4 simulation, expect maximum ~74 MIPs/strip in 6 GeV e⁺ shower



21 p.e. * 74 MIPs = 1554

expect dynamic range of 1600 pixel MPPC to be OK

different scintillator configurations

Kuraray scintillator megastrip with WLS fibre without

KNU extruded with WLS

13 layers of each scintillator type, assembled into ½ modules tested various combinations

results shown here are with Kuraray scintillator: first ½ module with WLS, second ½ module without fibre

test beam setup @ DESY

- 3 trigger & 2 veto counters: scintillator + PMT
- 4 drift chambers: measure beam position
- movable stage: ~0.1mm precision
- readout electronics same as CALICE AHCAL
- collected ~ 10^8 events in ~ 4 weeks

9 people from Japan & Korea went to DESY; invaluable assistance from CALICE members from DESY & UK & others.

detector calibration

remove absorber plates

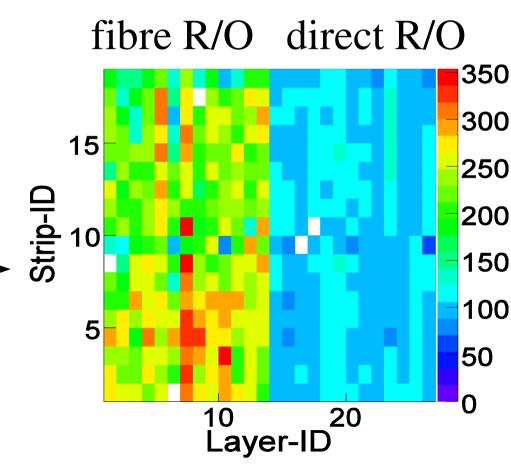
for each strip:

through strip:

scan entire detector in position beam: aim beam at centre of each strip

1. trigger & veto counters

2. requirements on other strips


calibration

fit selected ADC distribution to Gaussian-convoluted Landau distr.

calibration constant in each strip

direct r/o collect less photons, as expected

energy scan

- insert absorber plates
- expose to e+ beam, 1-6 GeV
- select events using trigger & veto counters
- convert signal in each strip to "MIP-equivalents"
- sum "MIP-equivalents" over strips

also performed position scan: not yet analysed

beam aimed at detector centre

Energy linearity & resolution

longitudinal shower profile

some non-continuities

not yet understood

probably calibration issue

future refinements

in the coming months we will improve the analysis:

- correct for MPPC non-linearity
- correct for temperature variations (small ~ few degrees)
- look for variations along the length of a strip (use tracking)
- measure performance of the other scintillator configurations
- others...

develop more realistic simulation & compare to data

Summary

Successful SCECAL beam test at DESY

Started analysing the data:

at 0th order results look fine

at 1st order there are several features not yet understood:

resolution slightly worse than expected (particularly constant term)

non-linearity ~ 4%

non-smooth longitudinal profile

we have a plan to improve the analysis & understand issues

We look forward to next (hadron) beam test, 2008 @ FNAL

