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ILC Schematic

– 11km SC linacs operating at 31.5 MV/m for 500 GeV
– Centralized injectorj

• Circular damping rings for electrons and positrons
• Undulator-based positron source

– Single IR with 14 mrad crossing angle
– Dual tunnel configuration for safety and availability
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ILC Parameters

• Overall parameters
– 2e34 peak luminosity2e34 peak luminosity
– 75% collider availability 500 fb-1 1st four years
– 9 0 mA average current during beam pulse9.0 mA average current during beam pulse
– 0.95 ms beam pulse and 1.5 ms rf pulse length
– 5 Hz operation and 230 MW power consumption– 5 Hz operation and 230 MW power consumption

• Beam parameter ranges defined for operability
1000 t 6000 b h– 1000 to 6000 bunches

– 1e10 to 2e10 per bunch
B b t 5 d 11 MW– Beam power between 5 and 11 MW

– Bunch length: 200 to 500 um at IP
3 0 620 3 9 0
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– IP spots sizes: σx ~ 350 – 620 nm; σy ~ 3.5 – 9.0 nm
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ILC Beam Parameters

Nominal Low N Large Y Low P
Repetition rate frep (Hz) 5 5 5 5
Number of particles per bunch N (1010) 2 1 2 2
N b f b h l b 2625 5120 2625 1320Number of bunches per pulse nb 2625 5120 2625 1320
Bunch interval in the main linac tb (ns) 369.2 189.2 369.2 480
in units of RF buckets 480 246 480 624
Average current in the main linac Iave (mA) 9 9 9 6.8
γ εx at IP (mm·rad) 10 10 12 10
γ εy at IP (mm·rad) 0.04 0.03 0.08 0.035
Beta function at IP βx (mm) 20 11 11 11
Beta function at IP βy (mm) 0 4 0 2 0 6 0 2Beta function at IP βy (mm) 0.4 0.2 0.6 0.2
R.m.s. beam size at IP σx (nm) 639 474 474 474
R.m.s. beam size at IP σy (nm) 5.7 3.5 9.9 3.8
R.m.s. bunch length σz (μm) 300 200 500 200
Disruption parameter Dx 0.17 0.11 0.52 0.21
Disruption parameter Dy 19.4 14.6 24.9 26.1
Beamstrahlung parameter Yave 0.048 0.05 0.038 0.097
Energy loss by beamstrahlung δB 0.024 0.017 0.027 0.055Energy loss by beamstrahlung δB 0.024 0.017 0.027 0.055
Number of beamstrahlung photons nγ 1.32 0.91 1.77 1.72
Luminosity enhancement factor HD 1.71 1.48 2.18 1.64
Geometric luminosity Lgeo 1034 cm-2 s-1 1.2 1.35 0.94 1.21
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Luminosity L 1034 cm-2 s-1 2 2 2 2
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ILC Energy Upgrade Path

• Linac energy upgrade path based on empty 
tunnels hard to ‘sell’tunnels hard to sell
– Empty tunnels obvious cost reduction

Lo er initial gradient increases capital costs• Lower initial gradient increases capital costs

• Baseline has tunnels for 500 GeV cms with a• Baseline has tunnels for 500 GeV cms with a 
linac gradient of 31.5 MV/m
Geometry of beam delivery system adequate• Geometry of beam delivery system adequate 
for 1 TeV cms

R i t di li t l t d i– Require extending linac tunnels past damping 
rings, adding transport lines, and moving turn-
around ~50 km site
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around   50 km site
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ILC Availability Issues

• ILC is ~10x larger than previous accelerators
Aiming at an availability of 75%• Aiming at an availability of ~75%

• Predict very little integrated luminosity using 
standard accelerator MTBFs and MTTRs
– Stringent requirements on component and 

sub-system availability 
• Improvements ~10x on magnets, PS, kickers, etc

D i h i h d d t d– Drives choices such as redundant power and 
particle sources and dual linac tunnels
Still has potential for significant impact on– Still has potential for significant impact on 
project cost in either direction
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Main Linac Features

• Linacs roughly 11km in length with ~280 rf units
– 13 GeV 250 GeV13 GeV 250 GeV 

• Accelerating gradient 31.5 MV/m @ 9.0 mA
E h f it i t f 3 d l• Each rf unit consists of 3 cryomodules:
– 2 modules with 9 SC cavities and one with 8 

iti 8 it d l h SC d l /BPMcavities; 8-cavity module has SC quadrupole/BPM
– All modules are 12.65 meters in length

RF B t d l t ith– RF power source: Bouncer-type modulator with 
pulse transformer & 10 MW Multi-beam klystron
RF distribution system 310kW per cavity– RF distribution system ~310kW per cavity

• Effective filling factor is ~67%
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Conceptual ML Tunnel View
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Main Linac Tunnels

• Design based on two 4.5m tunnels
Active components in service tunnel for access– Active components in service tunnel for access

– Includes return lines for BC and sources
Sized to allow for passage during installation– Sized to allow for passage during installation

– Personnel cross-over every 500 meters

22 March 2007       Tor RaubenheimerTor Raubenheimer 9



Global Design EffortGlobal Design Effort
Main Linac Tunnels (2)

S i t l Rf U it Pl iService tunnel Rf Unit – Plan view

Service tunnel Rf Unit – Elevation view
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Note lengths show obsolete 35 meter rf unit – presently 38 meters



Centralized Injector
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ILC Polarized Electron Source

– Dual 140kV guns and dual polarized laser systems
– Single NC capture section with spare klystrong p p y
– Collimation and then SC linac @ 23 MV/m 5 GeV
– Energy compressor and spin rotator before DREnergy compressor and spin rotator before DR
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Positron Source

• Undulator-based positron source
– ~100 meter undulator with K=1; λ = 1cm; 6mm aperture– ~100 meter undulator with K=1; λ = 1cm; 6mm aperture
– Easy upgrade to produce polarized positrons

• Undulator located at 150 GeV in electron linacUndulator located at 150 GeV in electron linac
– Eases operational issues when changing IP energy

• Two e+ production stations including 10% keep alivep g p

150 GeV 100 GeV 250 GeV
Positron Linac
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Beam Delivery 
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DRe Source Device
e- Target
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Device

Schematic not updated for centralized injector
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Central Positron Source

22 March 2007       Tor RaubenheimerTor Raubenheimer 14Current schematics have tunnels vertically offset
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Positron Target

• Large positron flux required
– Large diameter Ti target wheel rotated at ~500 rpmg g p
– Limited lifetime due to radiation damage

• Remote handling needed – hot cells located at surface
– Immersion in 6~7T OMD field improves yield by ~50%

Spinning Target Wheel w/ dc OMDTarget and OMD removable unit p g gg
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Damping Ring Requirements

• Compress 1 ms linac bunch train in to a “reasonable 
size” ringg
– Fast kicker (rise and fall time ~3ns)

• Damping of γεx,y= 10-2 m-rad positron beams to x,y

(γεx, γεv)=(8 × 10-6, 2 × 10-8) m-rad
– Low emittance, diagnostics

• Cycle time 0.2 sec (5 Hz rep rate) τ = 25 ms
– Damping wiggler (~200 meters of 1.6 T wiggler)

• ~2700 bunches, 2×1010 electrons or positrons per 
bunch, bunch length= 9 mm 

I t biliti ( l i l l t l d f t i )– Instabilities (classical, electron cloud, fast ion)
• Beam power > 200 kW

Injection efficiency dynamic aperture
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– Injection efficiency, dynamic aperture
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Damping Ring Parameters

Circumference 6695 m
Beam energy 5 GeVBeam energy 5 GeV
Average current 400 mA
Number of bunches 2767 3646 4346 5782Number of bunches 2767 3646 4346 5782
Bunch spacing 6.2 ns 4.6 ns 3.1 ns 3.1 ns
Bunch population 2.0×1010 1.5×1010 1.3×1010 1.0×1010p p
Normalized natural emittance 0.53 nm
Natural bunch length 9 mm
Natural energy spread 0.13%
RF voltage 23 MV
RF frequency 650 MHz
Momentum compaction 4.2 ×10-4
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Damping times 25.7 ms (x,y); 12.9 ms (z)
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Damping Ring Schematic

e- footprint is identical, but beam
circulates in opposite direction, and RF 
cavities are always upstream of the wiggler
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cavities are always upstream of the wiggler.
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Damping Ring Alcove
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Ring To Main Linac

• Transport beam from central DR complex to 
main linac injection ~15 km awaymain linac injection, 15 km away 
– Focusing lattice matched to linac periodicity

20 nTorr vacuum pressure– 20 nTorr vacuum pressure
• Collimation of halo from damping ring

– Avoid accelerating halo to high energies
• Spin Rotation
• Dual stage bunch compressor

– 9mm from DR 200 ~ 300 um in main linacs
• Diagnostic and correction elements
• Largely conventional components
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• Largely conventional components
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Ring To Main Linac: Schematic

N t E t l th f b b li till b i fi li dNote:  Exact lengths of sub-beamlines still being finalized.
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RTML Return Line

• Transport low emittance beam

38 m quad spacing, 45° FODO cell 
except in vertical arcs
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Beam Delivery System

• Functional requirements:
Post linac emittance and energy diagnostics– Post-linac emittance and energy diagnostics

– Coupling correction section
Halo collimation and Machine Protection– Halo collimation and Machine Protection

– Tuning dump and fast extraction dump
Final foc s s stem– Final focus system

• IP beta functions of βx = 10~20 mm and βy = 200~400 um

Interaction region with 14 mrad crossing– Interaction region with 14 mrad crossing
• IR hall large enough for two detectors in a push-pull mode
• Surface buildings for detector assembly g y

– Low loss extraction lines to main dumps (11 MW)
• Roughly 2 2 km per side
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Roughly 2.2 km per side
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BDS Features

• Mostly conventional components
Many conventional magnets high resolution– Many conventional magnets, high resolution 
BPMs and magnet movers

– Vacuum spec between 50 nTorr and 1 nTorrVacuum spec between 50 nTorr and 1 nTorr
– SC IR quads, large muon spoiler walls, high 

power dumpspower dumps
• Service tunnel for safety and hardware access

Personnel cross over every 500 m like linacs– Personnel cross-over every 500 m like linacs
– Utility penetrations every 100 meters (10% linac)

Si l l IR h ll• Single large IR hall
– Detector assembly largely done on surface
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BDS Magnet Layout

IR H ll
Service tunnelEmittance diag and 

coupling correction IR Hallcoupling correction

Collimation System

Tuning dump and 
fast extraction system

Main Dump
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BDS Civil Schematic
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Critical R&D

• Large amount of R&D and engineering needed
Largest impact on layout or cost:• Largest impact on layout or cost:
– Main linac SC cavity gradient and yield

M i li f d LLRF– Main linac rf power sources and LLRF
– Damping ring kicker, electron cloud, and RF
– BDS interaction region: push-pull, final magnets, 

and crab cavity
Oth j t f i• Other major cost or performance issues:
– Main linac CM design and heat loads
– Main linac quadrupole; BDS collimators
– Wakefields in linac and BDS
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– DR instabilities; e+ source undulator/target/OMD
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Cavity Gradient

• Cost of ILC is a strong function of the linac grad
Recent cavity production has had large spread• Recent cavity production has had large spread
– Design based on 35 MV/m

cavities yielding 31 5 MV/m
Yield estimate from processing 

f 17 Z iticavities yielding 31.5 MV/m
– Present variation would

increase cost ~7%

of 17 Zanon cavities

increase cost ~7%
• Potential for significant

improvementimprovement
– R&D in understanding 

gradient variationgradient variation
– S0/S1 getting statistics on

the processing techniques
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the processing techniques 
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Cavity Gradient (DESY)

M o d u le  6 Cavity tests:
 Vertical        (CW)
 Horizontal (10Hz)
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Cavity Gradient (Jlab)

By J. Mammosser (JLab)
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Cavity Gradient (KEK)

Summary of Vertical Tests (12 tests for 4 cavities)
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Cavity Gradient (Single Cell)

• Still learning how to process
Bit of black magic

Mechanical grind +light CP+Anneal+EP(80μm)+HPR+Baking
Series 1 2006/2007

8
Ave. Eacc=31.0±12.7MV/mSingle cell Results 2005-2006KEK new recipe : CBP+CP+Anneal+EP(80μm, tank)

+EP(3μm, fresh EP acid) + HF + HPR + Baking– Bit of black magic
– Few examples from KEK
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Training of operators and new HPR method reduced the scattering. Scattering was caused by bad HPR environment, easy mistakes 
of cavity assembly, RF processing method  and so on. 

Eacc [M V/m ]Eacc [M V/m ]

EP(3um, fresh EP acid) reduced the scattering.
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RF Cryomodules

• Big development programs at FNAL and KEK
Type 4 CM design pursued by international team• Type-4 CM design pursued by international team

• Fermilab has been putting together infrastructure
– FNAL to assemble kit from DESY in CY07 and 

tested in NML
– Build an additional Type-3 CM by mid-FY08
– Construct two new Type-4 CM by end of FY09

• KEK has started assembling STF
– Most infrastructure complete
– 2 cavities installed in CM to be tested in April
– 8 cavities to be tested in April

22 March 2007       Tor RaubenheimerTor Raubenheimer 33



Global Design EffortGlobal Design Effort
RF Power Sources

• Modulator development is focused on Marc 
Generator modulatorGenerator modulator
– Recent demonstration of for pulse length and full 

voltagevoltage
– Adding additional protection before full power tests
– Working on venier boards for pulse flattening– Working on venier boards for pulse flattening

• Work on adjustable tap-off to handle variation in 
cavity gradientcavity gradient
– Reduces cost impact of gradient variation from 15% 

to ~7%to ~7%
• Developing lower cost klystron

Pl tibl ith MBK
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– Plug compatible with MBK
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Damping Ring R&D

• Damping ring circumference depends on bunch 
spacing kickers electron cloud and ion instabspacing kickers, electron cloud, and ion instab.

• Demonstrated necessary kicker timing
N d 3 i d f ll f L N t– Need ~3ns rise and fall for Low N parameters

– R&D focused on developing a real system
• Large effort to understand electron cloud and 

develop chambers with low SEY
– Simulations everywhere
– Chambers being tested at KEK and SLAC

• Initial results are quite encouraging 2 e+ rings 1 ring

– Need to test robustness of solutions and verify 
f ith ILC lik diti
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performance with ILC-like conditions
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Summary

• Complete design for the ILC
– Recent scope reductions to reduce costRecent scope reductions to reduce cost 

mostly self-consistent
• Reference Design Report mostly complete g p y p

– Draft to be updated in April
– RDR cost review at Saclay/Orsay in May
– Final release planned for mid-summer

• R&D program is making good progressp g g g p g
– Working hard on understanding and improving SC 

gradient and on other RF topics for cost reduction
S &– Damping ring and BDS R&D programs established

– ILC MAC to review R&D program at FNAL in April
H t h PM i l f EDR b LCWS
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• Hope to have PM in place for EDR by LCWS


