

Software Tools in GLD study

Akiya Miyamoto KEK For Orsay Software Workshop 2 May, 2007

Based on ACFA-SIM-J activities

K.Fujii², Y.Fujishima⁸, H.Hano⁵, S.Hayashi⁷, D.Jeans⁷, Y.Kawakami⁶, K.Kawagoe⁷, Y.J.Kim⁹, A.Miyamoto², H.Miyata⁴,T.Nagamine¹, H.Ono⁴, H.Park⁹, Y.Sugimoto², A.Sugiyama⁸, T.Takeshita⁶, S.Yamamoto³, S.Yamshita⁵, T.Yoshioka⁵

Tohoku¹, KEK², GUAS³, Niigata⁴, Tokyo⁵, Shinshu⁶, Kobe⁷, Saga⁸, Kyungpook⁹

Our software tools

- > Link to various tools at http://acfahep.kek.jp/subg/sim/soft
- > GLD Software at http://ilcphys.kek.jp/soft
- > All packages are kept in the CVS. Accessible from http://jlccvs.kek.jp/

JSF

- Framework: JSF = Root based application
 - All functions based on C++, compiled or through CINT
 - Provides common framework for event generations, detector simulations, analysis, and beam test data analysis
 - JSFModule: Base class of analysis modules
 - JSFEventBuf: Base class of event data
 - Unified framework for interactive and batch job: GUI, event display
 - Loading libraries and creation of objects at run time using ROOT macros
 - A configuration file, jsf.conf, and run time arguments are used to define analysis parameters.
 - Data are stored as root objects; root trees, ntuples, etc
 - Base class for LCIO is provided.
 - Actual implementation depends on data/objects
- Release includes other tools QuickSim, Event generators, beamstrahlung spectrum generator, etc.

Example of QuickSim Study

GLD-DOD: physics/0607154

BSGEN

- BSGEN: A generator of beamstrahlung spectrum
- Method:
 - Create a differential luminosity spectrum by CAIN, dL/dE1dE2
 - Parametrise the spectrum to get a generator function
 - Usage: Generate (E1,E2) of equally weighted event or calculate event weight for given (E1,E2) depending on purpose.
- Parameter sets:
 - Nominal, LowQ, LowP, LargeY, HighLum spectrum at 500 GeV and 350 GeV
 - Nominal at 300 and 250 GeV
 - Beam parameters for 350, 300, and 250 are same as 500 GeV, except beam energy
- Initial beam energy spread is generated at the time of event generation

Jupiter/Satellites for Full Simulation Studies

JSF: the analysis flow controller based on ROOT

The release includes event generators, Quick Simulator, and simple event display

Jupiter feature - 1

- Using Geant4 8.0p01 \rightarrow update to 4.8.2.p01 in preparation
- Modular structure
 - → easy installation of subdetectors
- Geometry
 - Simple geometries are implemented (enough for the detector optimization)
 - parameters (size, material, etc) can be modified by input ASCII file.
 - → Parameters are saved as a ROOT object for use in Satellites later

Jupiter feature - 2

■ Input:

- StdHep file(ASCII), HepEvt, CAIN, or any generators implemented in JSF.
- Binary StdHep file interface was implemented, but yet to be tested.

Output:

- Exact Hits of each detectors (Smearing in Satellites)
- Pre- and Post- Hits at before/after Calorimeter
 Used to record true track information which enter
 CAL/FCAL/BCAL.
- Break points in tracking volume
- Interface to LCIO format is prepared in the JSF framework
 Compatibility is yet to be tested.

Run mode:

- A standalone Geant4 application
- JSF application to output a ROOT file.

GLD Geometry in Jupiter

Typical Event Display

Event display using ROOT

- ZH \rightarrow vvh : Two jets from Higgs can be seen.

Anti-DID Field and Backgrounds

Analysis: Metis and Uranus

- Uranus and Metis is a collection of reconstruction tools for Jupiter data.
 - Uranus: for analysis of beam data and simulated data
 - Satellites: for analysis of simulated data. Most of the Satellite classes are inherited from Uranus
- Metis and Uranus are collection of JSF Modules. Each module is independent, thus shall be easy to implement different reconstruction algorithm according to interests
- Track/Hits/Cluster/PFO information is kept as root objects
 Geometry information is kept in a root object, JSFEnv

A standard analysis flow

Gaussian smearing

Cheated track finder Kalman track fitter

Cheated hit finder Kalman track fitter

Cell merge Make Tile/Strip

Particle Flow Analysis (cheated/Real)

Momentum resolution

Exact hit points created by single μ were fitted by Kalman filter package

Jet Energy Resolution (Z-pole)

- $Z \rightarrow$ uds @ 91.2GeV, tile calorimeter, 2cm x 2cm tile size

Please see a talk by Tamaki Yoshioka

T. Yoshioka (Tokyo)