Simulation and Reconstruction: ALCPG Framework & Toolkit Norman Graf (for the ALCPG Simulation & Reconstruction Team) **ILC Software and Tools Workshop May 2, 2007** #### Introduction - This talk not meant to be an in-depth summary of all existing functionality. - □ Not enough time. - □ Been done many times in the past. - Simply an update on some recent, added functionality. - Improvements to "easy" detector simulations (i.e. via compact.xml). - □ Si wafers, TPC simulation with cuts by region - lelaps for fast MC hits generation. - polyhedral Calorimeters - Reconstruction: - trf toolkit (see tracking talk) - Individual particle reconstruction template (see Jet Energy Resolution talk) - lcio tools split/merge/concatenate etc. - Event samples, both signal and backgrounds. #### Goals - Enable full studies of ILC physics to optimize detector design and eventual physics output - Use realistic detector geometries - □ Full simulation (in combination with fast parameterized MCs) - □ Full reconstruction - Simulate benchmark physics processes on different full detector designs. - Encourage development of realistic analysis algorithms - See how these algorithms work with full detector simulations - Facilitate contribution from physicists in different locations with various amounts of time available (normally not much!) - □ Software should be easy to install, learn, use - Goal is to allow software to be installed from CD or web with no external dependencies - Support via web based forums, tutorials, meetings. ### Overview: "SiD/ALCPG" Framework ### Improved Detector Simulations - Need to clarify exactly what is required for the CDR and what is deferred to the TDR. - However, generally agreed that the detector design should have some semblance to a detector which can be built. - e.g. no floating cylindrical calorimeters. - Is the simulation infrastructure capable of modeling realistic detector geometries? - Yes! The full simulation package slic reads in geometries in lcdd, which is a low-level format that targets Geant4 primitives. ### Improved Detector Simulations - The full simulation package slic reads in geometries in lcdd, which is a low-level format that targets Geant4 primitives. - Detectors of arbitrarily complex shape and readout can be simulated using only xml file as input. - However, it would be extremely tedious to generate these files. - Would also not provide a connection to the reconstruction, nor to the event display. - Prefer (but not required) to define geometries using a "compact" description. - Small Java program for converting from compact description to a variety of other formats. - GeomConverter. #### GeomConverter #### Silicon Tracking Detectors - For the purposes of quickly scanning the parameter space of number of tracking layers and their radial and z positioning, etc. have been simulating the trackers as cylindrical shells or planar disks. - Are now moving beyond this to be able to realistically simulate buildable subdetectors. - Have always been able to simulate arbitrarily complex shapes in slic using lcdd, but this is a very verbose format. - Introduced Geometry and Detector Element trees to handle arbitrary hierarchies of detector elements. - Have now introduced tilings of planar detectors (simulating silicon wafers) into the compact xml description. ### Detailed Geometry in org.lcsim - Geometry tree - hierarchy of PhysicalVolumes and LogicalVolumes - LogicalVolume - □ shapes parameters, isInside - □ materials A, Z, density, radiation length, interaction length, etc. - PhysicalVolume - □ transformation translation + rotation - DetectorElement tree - hierarchy of DetectorElements with uplinks - What Detector Element is point inside? - What position of a DetectorElement? - What is the global to local coordinate transformation for the DetectorElement? - Existing Detector, Subdetector become DetectorElements ``` // Get child DetectorElements of the Detector. IDetectorElementContainer detElems = detector.getChildren(); // Loop over the child DEs. for (IDetectorElement de : detElems) { // Print the name. System.out.println(de.getName()); // Print the position. if (de.hasGeometryInfo()) { System.out.println(de.getGeometry().getPosition()); } // Print the names of the children. for (IDetectorElement child : de.getChildren()) { System.out.println(" " + child.getName()); } } ``` #### The Barrel Vertex Detector #### The Barrel Outer Tracker #### TPC Simulations - Most simulations to-date have created single hit at intersection with pad row "cylinder". - Not too bad an approximation for stiff tracks, but causes problems for loopers. - Can improve simulations with a combination of range cuts and maximum step size cuts. - These are configurable by region (themselves configurable) in the compact description. - Can define them differently for silicon and TPC. - Can change them at runtime to study settings. ### Big Picture Decisions - There is still a need for people to investigate larger issues, such as the number and layout of tracker and vertex barrel and disk layers. - This is most easily done with the simplified geometries. - For example, changing from the 5-layer cylindrical barrel geometry to an 8-layer geometry took less than 15 minutes. - The work lies in the analysis and comparisons. - Tight connection between geometry/sim/reco also advantageous in TB analyses. ### lelaps - Fast detector response package. - Handles decays in flight, multiple scattering and energy loss in trackers. - Parameterizes particle showers in calorimeters. - Produces Icio data at the hit level. - Uses runtime geometry (compact.xml \rightarrow godl). - An excellent tool for designing tracking detectors! http://lelaps.freehep.org/index.html ### Calorimeter Improved Simulations - Having settled on a concept with the requisite performance, will have to design a detector which can be built. - Engineering will have to be done to come up with the plans, but the existing simulation package can already handle arbitrarily complex shapes. - Can then study effects of support material, dead regions due to stay-clears, readout, power supplies, etc. - However, hard work is in analyzing this, not simulating it. ### Improved Calorimeter Simulations II - Have two types of polygonal barrel geometries defined in the compact description: - Overlapping staves: Wedge staves: Can define ~arbitrary layerings within these envelopes to simulate sampling calorimeters. sid01_polyhedra Dodecagonal, overlapping stave EMCal Dodecagonal, wedge HCal Cylindrical Solenoid with substructure Octagonal, wedge Muon #### Detector Variants - Runtime XML format allows variations in detector geometries to be easily set up and studied: - Stainless Steel vs. Tungsten HCal sampling material - □ RPC vs. GEM vs. Scintillator readout - □ Layering (radii, number, composition) - Readout segmentation (size, projective vs. nonprojective) - Tracking detector technologies & topologies - TPC, Silicon microstrip, SIT, SET - "Wedding Cake" Nested Tracker vs. Barrel + Cap - Field strength - □ Far forward MDI variants (0, 2, 14, 20 mr) ### Example Geometries ## Example of Test Beam Analysis #### slic - Number of internal optimizations and refactorings. - Should not be noticed by end users. - Upgrades to recent version of Geant4 has essentially eliminated problem of event aborts when particle tracking became stuck. - slic from scratch: ``` cvs -d :pserver:anonymous@cvs.freehep.org:/cvs/lcd co SimDist cd SimDist ``` ./configure make Binaries also available for Windows, Mac, Linuxes #### How to run full reconstruction? ### org.lcsim Reconstruction Packages | Contrib | | Production | | | | | | | | |--|-------------------------------|----------------------------------|--------------------------|---|--------------------------------------|--------------------------------|-------------------------------|------------|--| | Package | Author | State | Docs/Talks | Description | Package | Author | State | Docs/Talks | Description | | org.lcsim.contrib.CalAnal | 2 | 2 | | ? | org.lcsim.digisim | Guilherme Lima | 7 | | Calorimetry digitization simulator | | rg.lcsim.contrib.CarstenHensel® | Carsten Hensel | 2 | | HMatrix cluster analysis | org.lcsim.mc.CCDSim | Nick Sinev | 7 | | CCD digitization | | rg.lcsim.contrib.Cassell.recon.Cheat | | ? | | Cheat Recon driver | org.lcsim.mc.fast | Many | 7 | | Fast MC package, including tracking, calorimetry | | org.lcsim.contrib.EricBenavidez.EMClusterID | Ron Cassell
Eric Benevides | ? | | HMatrices analysis of single particle events | org.lcsim.recon.cat | D. Onoprienko
E. von Toerne | functional, under development | | Calorimeter Assisted Track Finder | | | | | | | org.lcsim.recon.cheater | Mike Ronan | 7 | confluence | Recon cheater | | org.lcsim.contrib.JanStrube.tracking | Jan Strube | JUnit tests Javadoc | A New Track
Interface | Alternate implementation of Track, FastMCTrack, Swimmer. Awaiting incorporation into main body of code | org.lcsim.recon.cluster.analysis | Ron Cassell | 7 | | Generic cluster performance analysis | | | | | | | org.lcsim.recon.cluster.cheat | Ron Cassell | > | | Cluster cheater | | | | | | Vertex fitter, using the Kalman approach by Grab, Luchsinger, Add the | org.lcsim.recon.cluster.clumpfinder | Mat Charles | 7 | | finds dense clumps within clusters | | rg.lcsim.contrib.JanStrube.vtxFitter | Jan Strube | incomplete | | VtxFitterDriver from the sandbox to get an idea of the current status ZVTop implementation, taking advantage of the new Track interface, alpha | org.lcsim.recon.cluster.directedtree | G.Lime, J.McCormick,
Vishnu | 7 | | Directed tree cluster finder | | orq.lcsim.contrib.JanStrube.zvtop | Jan Strube | incomplete | | quality | org.lcsim.recon.cluster.fixedcone | Norman Graf | 7 | | Cluster finder | | rq.lcsim.contrib.KFFiter | Fred Blanc | ? | | Kalman Filter Fitter | org.lcsim.recon.cluster.mipfinder | Wolfgang Mader, Mat | stable | | MIP finding | | rg.lcsim.contrib.LeiXia | Lei Xia | ? | | PFA analysis | | Charles | | | | | rg.lcsim.contrib.NickSinev.tracking.wmfitter | Nick Sinev | ? | | SLD Weight matrix fitter | org.lcsim.recon.cluster.mst | Mat Charles
Norman Graf | stable 2 | _ | Minimal spanning tree cluster finder | | org.lcsim.contrib.NickSinev.ztracking | Mike Ronan+Nick
Sinev? | | | Track cheater? | org.lcsim.recon.cluster.nn | | stable | | Nearest neighbout cluster finder | | | | ? | | | org.lcsim.recon.cluster.structural | Mat Charles | stable | | Specialized clusterer for hadronic showers | | rg.lcsim.contrib.onoprien.mcTrackFinder | D. Onoprienko | complete | | Configurable cheater track finder and related utilities. | org.lcsim.recon.emid.hmatrix | Norm Graf | 7 | | HMatrix package | | org.lcsim.contrib.onoprien.tester | D. Onoprienko | functional, under
development | | | org.lcsim.recon.ganging | Ron Cassell | 1.5 | | Allows virtual ganging of calorimeter hits | | | | | | Track finder performance testing suite | org.lcsim.recon.muon | C. Milstene | , | | Muon finding | | rg.lcsim.contrib.SODTracker | Fred Blanc | ? | | Silicon Outer Detector (SOD) Tracker | org.lcsim.recon.particle | Ron Cassell | 7 | | Perfect PFA | | rg.lcsim.contrib.SiStripSim | Tim Nelson | ? | | Silicon Strip Simulation (moving soon to org.lcsim.detector) | org.lcsim.recon.pfa.cheat | Mat Charles | functional | | Cheating tools for PFA | | org.lcsim.contrib.SteveMagill | | ? | | PFA Analysis example | org.lcsim.recon.pfa.identifier | Mat Charles | functional | | Turn more primitive objects (clusters, tracks, etc) into
ReconstructedParticles | | org.lcsim.contrib.niu | Vishnu and
Guilherme | ? | | NIU PFA code | org.lcsim.recon.pfa.output | Mat Charles | 7 | | Modules to produce standard plots for PFAs | | | Guillettile | 2 | | 2 | org.lcsim.recon.pfa.structural | Mat Charles | 2 | incomplete | Iowa PFA implementation (when stable) and associated too | | rg.lcsim.contrib.proulx | Y | 7 | | ' | org.lcsim.recon.tracking.cheat | Ron Cassell | 7 | | Track Cheater | | org.lcsim.contrib.seedtracker | Richard Partridge | ? | | Tracking algorithm based on forming track seeds from all 3-hit combinations | org.lcsim.recon.tracking.ftf | 7 | 7 | | 7 | | | | | | Experimental geometry package (Developed further in Geomeonverter as | org.losim.recon.tracking.trf | Norm Graf | 7 | | TRF track finder + fitter | | rg.lcsim.contrib.subdetector.tracker.silicon | Tim Nelson | ? | | org.lcsim.detector by Jeremy) | org.lcsim.recon.vertexing.billoir | Norman Graf,
(Jan Strube) | incomplete | | vertex fitting based on Billoir's method. Needs testing | | rg.lcsim.contrib.tracking | Tim Nelson | ? | | Outer-tracker-only track finding | org.lcsim.recon.vertexing.zvtop4 | Jan Strube | incomplete | | Vertex finding/fitting, awaiting completion of a vertex fitter | | rg.lcsim.contrib.uiowa | Mat Charles | unstable | | Template-style PFA implementation (NonTrivialPFA) | org.lcsim.recon.ztracking | M. Ronan | | | Track cheater | #### Conclusions - Many people are working on reconstruction code - □ Effort to persuade people to commit code to "contrib" area has been successful - But it is not easy for new users to understand how to use or contribute - Working to extend tutorials to also cover reconstruction packages - Encourage developers to contribute documentation - □ Start by updating: http://confluence.slac.stanford.edu/x/f3c - Need more realistic analysis examples (help from benchmarking and physics groups?) - Extend PFA template idea to full reconstruction #### Reconstruction - Many of the core reconstruction algorithms (track finding, fitting, calorimeter clustering, etc.) are in place. - Have defined interfaces for a number of tasks, with many different plug-&-play implementations (e.g. calorimeter clustering). - Standardized algorithm comparison tools. - Standard calorimeter calibration procedures. - Concentrating on implementing a template for individual particle reconstruction: - Decouples interdependencies of different tasks. - Allows comparisons between different algorithms or implementations. - Easily swap in MC "cheater" to study effects of particular analysis task, independent of other tasks. #### LCIO Utilities A number of LCIO file-handling tasks have been assembled and are available as command-line options. ``` > lcio -h usage: LcioCommandLineTool Commands: compare concat validate siodump print stdhep split random count merge -h Print lcio command-line tool usage. Set the verbosity. ``` #### LCIO split / concat - split simply splits input file into smaller parts - > lcio split usage: split - -i The input LCIO file. - -n The number of events to split. - Similarly, *concat* concatenates many lcio files into one single file. - > lcio concat -h usage: concat - -f List of input files, 1 per line. - -i Add an input file. - -o Set the name of the output file. #### LCIO stdhep & merge - stdhep converts MC files in stdhep format into LCIO format. - merge combines events, merging MC particle and detector hit lists, including time offsets: - > lcio merge -i file1.slcio -i file2.slcio -o merged.slcio can also specify a file with a list of files to merge: > lcio merge -f mergefiles.txt -o merged.slcio ``` The file mergefiles.txt should have the following format: [file_name],[n_reads_per_event],[start_time],[delta_time] So this would pileup 5 backgrounds onto some events: events.slcio,1,0,0 backgrounds1.slcio,5,0,1 ``` ### "Signal" and Diagnostic Samples - Have generated canonical data samples and have processed them through full detector simulations. - simple single particles: γ , μ , e, $\pi^{+/-}$, n, ... - composite single particles: π^0 , ρ , K^0_S , τ , ψ , Z, ... - Z Pole events: comparison to SLD/LEP - WW, ZZ, tt, qq, tau pairs, mu pairs, Zγ, Zh: - Web accessible: http://www.lcsim.org/datasets/ftp.html ### Backgrounds - Cain (to be done) & GuineaPig pairs and photons. - Add crossing angle, converted to stdhep - Muons and other backgrounds from upstream collimators & converted to stdhep. - γγ → hadrons generated as part of the "2ab-1 SM sample." - All events then capable of being processed through full detector simulation. - Additive at the detector hit level, with time offsets, using LCIO utilities. #### Resources for getting started - http://lcsim.org/ Web Site - Tutorials - Software installation - Using tools - Simple Analysis Examples - Developers Guide - Datasets - Documentation - Confluence Wiki - More tutorials - More documentation - Frequently asked Questions - You are encouraged to comment on, add to, or correct existing documentation - https://jira.slac.stanford.edu/signup ### Resources for getting started - Discussion Forums - http://forum.linearcollider.org/ - SLIC, org.lcsim - Not recommended - Spray E-mail to developers - Banging head against wall - Uninstall and reinstall software 3 times - Recommended - Post questions on the forum - □ You will get faster answers - You will get more accurate answers - Others will benefit from seeing answers to your questions - Discuss what you would like to do - get feedback on best practices ### ALCPG Simulation Summary - ALCPG Sim/Reco team supports an ambitious detector simulation effort. - Goal is flexibility and interoperability, not technology or concept limited. - Provides full data samples for ILC physics studies. - □ Stdhep and LCIO files available on the web. - Provides a complete and flexible detector simulation package capable of simulating arbitrarily complex detectors with runtime detector description. - Reconstruction & analysis framework exists, core functionality available, individual particle reconstruction template developed, various analysis algorithms implemented. - Need to iterate and apply to various detector designs. #### Additional Information - Icsim.org http://www.lcsim.org - ILC Forum http://forum.linearcollider.org - Wiki http://confluence.slac.stanford.edu/display/ilc/Home - org.lcsim http://www.lcsim.org/software/lcsim - Software Index http://www.lcsim.org/software - Detectors http://www.lcsim.org/detectors - LCIO http://lcio.desy.de - SLIC http://www.lcsim.org/software/slic - LCDD http://www.lcsim.org/software/lcdd - JAS3 http://jas.freehep.org/jas3 - AIDA http://aida.freehep.org - WIRED http://wired.freehep.org