Simulation and Reconstruction: ALCPG Framework & Toolkit

Norman Graf
(for the ALCPG Simulation & Reconstruction Team)

ILC Software and Tools Workshop May 2, 2007

Introduction

- This talk not meant to be an in-depth summary of all existing functionality.
 - □ Not enough time.
 - □ Been done many times in the past.
- Simply an update on some recent, added functionality.
- Improvements to "easy" detector simulations (i.e. via compact.xml).
 - □ Si wafers, TPC simulation with cuts by region
 - lelaps for fast MC hits generation.
 - polyhedral Calorimeters
- Reconstruction:
 - trf toolkit (see tracking talk)
 - Individual particle reconstruction template (see Jet Energy Resolution talk)
- lcio tools split/merge/concatenate etc.
- Event samples, both signal and backgrounds.

Goals

- Enable full studies of ILC physics to optimize detector design and eventual physics output
 - Use realistic detector geometries
 - □ Full simulation (in combination with fast parameterized MCs)
 - □ Full reconstruction
 - Simulate benchmark physics processes on different full detector designs.
 - Encourage development of realistic analysis algorithms
 - See how these algorithms work with full detector simulations
- Facilitate contribution from physicists in different locations with various amounts of time available (normally not much!)
 - □ Software should be easy to install, learn, use
 - Goal is to allow software to be installed from CD or web with no external dependencies
 - Support via web based forums, tutorials, meetings.

Overview: "SiD/ALCPG" Framework

Improved Detector Simulations

- Need to clarify exactly what is required for the CDR and what is deferred to the TDR.
- However, generally agreed that the detector design should have some semblance to a detector which can be built.
 - e.g. no floating cylindrical calorimeters.
- Is the simulation infrastructure capable of modeling realistic detector geometries?
- Yes! The full simulation package slic reads in geometries in lcdd, which is a low-level format that targets Geant4 primitives.

Improved Detector Simulations

- The full simulation package slic reads in geometries in lcdd, which is a low-level format that targets Geant4 primitives.
 - Detectors of arbitrarily complex shape and readout can be simulated using only xml file as input.
- However, it would be extremely tedious to generate these files.
- Would also not provide a connection to the reconstruction, nor to the event display.
- Prefer (but not required) to define geometries using a "compact" description.
- Small Java program for converting from compact description to a variety of other formats.
 - GeomConverter.

GeomConverter

Silicon Tracking Detectors

- For the purposes of quickly scanning the parameter space of number of tracking layers and their radial and z positioning, etc. have been simulating the trackers as cylindrical shells or planar disks.
- Are now moving beyond this to be able to realistically simulate buildable subdetectors.
- Have always been able to simulate arbitrarily complex shapes in slic using lcdd, but this is a very verbose format.
- Introduced Geometry and Detector Element trees to handle arbitrary hierarchies of detector elements.
- Have now introduced tilings of planar detectors (simulating silicon wafers) into the compact xml description.

Detailed Geometry in org.lcsim

- Geometry tree
 - hierarchy of PhysicalVolumes and LogicalVolumes
 - LogicalVolume
 - □ shapes parameters, isInside
 - □ materials A, Z, density, radiation length, interaction length, etc.
 - PhysicalVolume
 - □ transformation translation + rotation
- DetectorElement tree
 - hierarchy of DetectorElements with uplinks
 - What Detector Element is point inside?
 - What position of a DetectorElement?
 - What is the global to local coordinate transformation for the DetectorElement?
- Existing Detector, Subdetector become
 DetectorElements

```
// Get child DetectorElements of the Detector.
IDetectorElementContainer detElems = detector.getChildren();
// Loop over the child DEs.
for ( IDetectorElement de : detElems )
{
    // Print the name.
    System.out.println( de.getName() );
    // Print the position.
    if ( de.hasGeometryInfo() )
    {
        System.out.println( de.getGeometry().getPosition() );
    }
    // Print the names of the children.
    for ( IDetectorElement child : de.getChildren() )
    {
        System.out.println( " " + child.getName() );
    }
}
```

The Barrel Vertex Detector

The Barrel Outer Tracker

TPC Simulations

- Most simulations to-date have created single hit at intersection with pad row "cylinder".
- Not too bad an approximation for stiff tracks, but causes problems for loopers.
- Can improve simulations with a combination of range cuts and maximum step size cuts.
- These are configurable by region (themselves configurable) in the compact description.
 - Can define them differently for silicon and TPC.
 - Can change them at runtime to study settings.

Big Picture Decisions

- There is still a need for people to investigate larger issues, such as the number and layout of tracker and vertex barrel and disk layers.
- This is most easily done with the simplified geometries.
- For example, changing from the 5-layer cylindrical barrel geometry to an 8-layer geometry took less than 15 minutes.
- The work lies in the analysis and comparisons.
- Tight connection between geometry/sim/reco also advantageous in TB analyses.

lelaps

- Fast detector response package.
- Handles decays in flight, multiple scattering and energy loss in trackers.
- Parameterizes particle showers in calorimeters.
- Produces Icio data at the hit level.
- Uses runtime geometry (compact.xml \rightarrow godl).
- An excellent tool for designing tracking detectors!

http://lelaps.freehep.org/index.html

Calorimeter Improved Simulations

- Having settled on a concept with the requisite performance, will have to design a detector which can be built.
- Engineering will have to be done to come up with the plans, but the existing simulation package can already handle arbitrarily complex shapes.
- Can then study effects of support material, dead regions due to stay-clears, readout, power supplies, etc.
- However, hard work is in analyzing this, not simulating it.

Improved Calorimeter Simulations II

- Have two types of polygonal barrel geometries defined in the compact description:
- Overlapping staves: Wedge staves:

Can define ~arbitrary layerings within these envelopes to simulate sampling calorimeters. sid01_polyhedra

Dodecagonal, overlapping stave EMCal

Dodecagonal, wedge HCal

Cylindrical
Solenoid with
substructure
Octagonal,
wedge Muon

Detector Variants

- Runtime XML format allows variations in detector geometries to be easily set up and studied:
 - Stainless Steel vs. Tungsten HCal sampling material
 - □ RPC vs. GEM vs. Scintillator readout
 - □ Layering (radii, number, composition)
 - Readout segmentation (size, projective vs. nonprojective)
 - Tracking detector technologies & topologies
 - TPC, Silicon microstrip, SIT, SET
 - "Wedding Cake" Nested Tracker vs. Barrel + Cap
 - Field strength
 - □ Far forward MDI variants (0, 2, 14, 20 mr)

Example Geometries

Example of Test Beam Analysis

slic

- Number of internal optimizations and refactorings.
 - Should not be noticed by end users.
- Upgrades to recent version of Geant4 has essentially eliminated problem of event aborts when particle tracking became stuck.
- slic from scratch:

```
cvs -d :pserver:anonymous@cvs.freehep.org:/cvs/lcd co SimDist cd SimDist
```

./configure

make

Binaries also available for Windows, Mac, Linuxes

How to run full reconstruction?

org.lcsim Reconstruction Packages

Contrib		Production							
Package	Author	State	Docs/Talks	Description	Package	Author	State	Docs/Talks	Description
org.lcsim.contrib.CalAnal	2	2		?	org.lcsim.digisim	Guilherme Lima	7		Calorimetry digitization simulator
rg.lcsim.contrib.CarstenHensel®	Carsten Hensel	2		HMatrix cluster analysis	org.lcsim.mc.CCDSim	Nick Sinev	7		CCD digitization
rg.lcsim.contrib.Cassell.recon.Cheat		?		Cheat Recon driver	org.lcsim.mc.fast	Many	7		Fast MC package, including tracking, calorimetry
org.lcsim.contrib.EricBenavidez.EMClusterID	Ron Cassell Eric Benevides	?		HMatrices analysis of single particle events	org.lcsim.recon.cat	D. Onoprienko E. von Toerne	functional, under development		Calorimeter Assisted Track Finder
					org.lcsim.recon.cheater	Mike Ronan	7	confluence	Recon cheater
org.lcsim.contrib.JanStrube.tracking	Jan Strube	JUnit tests Javadoc	A New Track Interface	Alternate implementation of Track, FastMCTrack, Swimmer. Awaiting incorporation into main body of code	org.lcsim.recon.cluster.analysis	Ron Cassell	7		Generic cluster performance analysis
					org.lcsim.recon.cluster.cheat	Ron Cassell	>		Cluster cheater
				Vertex fitter, using the Kalman approach by Grab, Luchsinger, Add the	org.lcsim.recon.cluster.clumpfinder	Mat Charles	7		finds dense clumps within clusters
rg.lcsim.contrib.JanStrube.vtxFitter	Jan Strube	incomplete		VtxFitterDriver from the sandbox to get an idea of the current status ZVTop implementation, taking advantage of the new Track interface, alpha	org.lcsim.recon.cluster.directedtree	G.Lime, J.McCormick, Vishnu	7		Directed tree cluster finder
orq.lcsim.contrib.JanStrube.zvtop	Jan Strube	incomplete		quality	org.lcsim.recon.cluster.fixedcone	Norman Graf	7		Cluster finder
rq.lcsim.contrib.KFFiter	Fred Blanc	?		Kalman Filter Fitter	org.lcsim.recon.cluster.mipfinder	Wolfgang Mader, Mat	stable		MIP finding
rg.lcsim.contrib.LeiXia	Lei Xia	?		PFA analysis		Charles			
rg.lcsim.contrib.NickSinev.tracking.wmfitter	Nick Sinev	?		SLD Weight matrix fitter	org.lcsim.recon.cluster.mst	Mat Charles Norman Graf	stable 2	_	Minimal spanning tree cluster finder
org.lcsim.contrib.NickSinev.ztracking	Mike Ronan+Nick Sinev?			Track cheater?	org.lcsim.recon.cluster.nn		stable		Nearest neighbout cluster finder
		?			org.lcsim.recon.cluster.structural	Mat Charles	stable		Specialized clusterer for hadronic showers
rg.lcsim.contrib.onoprien.mcTrackFinder	D. Onoprienko	complete		Configurable cheater track finder and related utilities.	org.lcsim.recon.emid.hmatrix	Norm Graf	7		HMatrix package
org.lcsim.contrib.onoprien.tester	D. Onoprienko	functional, under development			org.lcsim.recon.ganging	Ron Cassell	1.5		Allows virtual ganging of calorimeter hits
				Track finder performance testing suite	org.lcsim.recon.muon	C. Milstene	,		Muon finding
rg.lcsim.contrib.SODTracker	Fred Blanc	?		Silicon Outer Detector (SOD) Tracker	org.lcsim.recon.particle	Ron Cassell	7		Perfect PFA
rg.lcsim.contrib.SiStripSim	Tim Nelson	?		Silicon Strip Simulation (moving soon to org.lcsim.detector)	org.lcsim.recon.pfa.cheat	Mat Charles	functional		Cheating tools for PFA
org.lcsim.contrib.SteveMagill		?		PFA Analysis example	org.lcsim.recon.pfa.identifier	Mat Charles	functional		Turn more primitive objects (clusters, tracks, etc) into ReconstructedParticles
org.lcsim.contrib.niu	Vishnu and Guilherme	?		NIU PFA code	org.lcsim.recon.pfa.output	Mat Charles	7		Modules to produce standard plots for PFAs
	Guillettile	2		2	org.lcsim.recon.pfa.structural	Mat Charles	2	incomplete	Iowa PFA implementation (when stable) and associated too
rg.lcsim.contrib.proulx	Y	7		'	org.lcsim.recon.tracking.cheat	Ron Cassell	7		Track Cheater
org.lcsim.contrib.seedtracker	Richard Partridge	?		Tracking algorithm based on forming track seeds from all 3-hit combinations	org.lcsim.recon.tracking.ftf	7	7		7
				Experimental geometry package (Developed further in Geomeonverter as	org.losim.recon.tracking.trf	Norm Graf	7		TRF track finder + fitter
rg.lcsim.contrib.subdetector.tracker.silicon	Tim Nelson	?		org.lcsim.detector by Jeremy)	org.lcsim.recon.vertexing.billoir	Norman Graf, (Jan Strube)	incomplete		vertex fitting based on Billoir's method. Needs testing
rg.lcsim.contrib.tracking	Tim Nelson	?		Outer-tracker-only track finding	org.lcsim.recon.vertexing.zvtop4	Jan Strube	incomplete		Vertex finding/fitting, awaiting completion of a vertex fitter
rg.lcsim.contrib.uiowa	Mat Charles	unstable		Template-style PFA implementation (NonTrivialPFA)	org.lcsim.recon.ztracking	M. Ronan			Track cheater

Conclusions

- Many people are working on reconstruction code
- □ Effort to persuade people to commit code to "contrib" area has been successful
- But it is not easy for new users to understand how to use or contribute
- Working to extend tutorials to also cover reconstruction packages
 - Encourage developers to contribute documentation
 - □ Start by updating: http://confluence.slac.stanford.edu/x/f3c
 - Need more realistic analysis examples (help from benchmarking and physics groups?)
 - Extend PFA template idea to full reconstruction

Reconstruction

- Many of the core reconstruction algorithms (track finding, fitting, calorimeter clustering, etc.) are in place.
- Have defined interfaces for a number of tasks, with many different plug-&-play implementations (e.g. calorimeter clustering).
- Standardized algorithm comparison tools.
- Standard calorimeter calibration procedures.
- Concentrating on implementing a template for individual particle reconstruction:
 - Decouples interdependencies of different tasks.
 - Allows comparisons between different algorithms or implementations.
 - Easily swap in MC "cheater" to study effects of particular analysis task, independent of other tasks.

LCIO Utilities

A number of LCIO file-handling tasks have been assembled and are available as command-line options.

```
> lcio -h
   usage: LcioCommandLineTool
   Commands:
   compare
   concat
   validate
   siodump
   print
   stdhep
   split
   random
   count
   merge
   -h Print lcio command-line tool usage.
       Set the verbosity.
```

LCIO split / concat

- split simply splits input file into smaller parts
 - > lcio split

usage: split

- -i The input LCIO file.
- -n The number of events to split.
- Similarly, *concat* concatenates many lcio files into one single file.
 - > lcio concat -h

usage: concat

- -f List of input files, 1 per line.
- -i Add an input file.
- -o Set the name of the output file.

LCIO stdhep & merge

- stdhep converts MC files in stdhep format into LCIO format.
- merge combines events, merging MC particle and detector hit lists, including time offsets:
 - > lcio merge -i file1.slcio -i file2.slcio -o merged.slcio

can also specify a file with a list of files to merge:

> lcio merge -f mergefiles.txt -o merged.slcio

```
The file mergefiles.txt should have the following format: [file_name],[n_reads_per_event],[start_time],[delta_time] So this would pileup 5 backgrounds onto some events: events.slcio,1,0,0 backgrounds1.slcio,5,0,1
```

"Signal" and Diagnostic Samples

- Have generated canonical data samples and have processed them through full detector simulations.
- simple single particles: γ , μ , e, $\pi^{+/-}$, n, ...
- composite single particles: π^0 , ρ , K^0_S , τ , ψ , Z, ...
- Z Pole events: comparison to SLD/LEP
- WW, ZZ, tt, qq, tau pairs, mu pairs, Zγ, Zh:
- Web accessible:

http://www.lcsim.org/datasets/ftp.html

Backgrounds

- Cain (to be done) & GuineaPig pairs and photons.
 - Add crossing angle, converted to stdhep
- Muons and other backgrounds from upstream collimators & converted to stdhep.
- γγ → hadrons generated as part of the "2ab-1 SM sample."
- All events then capable of being processed through full detector simulation.
- Additive at the detector hit level, with time offsets, using LCIO utilities.

Resources for getting started

- http://lcsim.org/ Web Site
 - Tutorials
 - Software installation
 - Using tools
 - Simple Analysis Examples
 - Developers Guide
 - Datasets
 - Documentation
- Confluence Wiki
 - More tutorials
 - More documentation
 - Frequently asked Questions
 - You are encouraged to comment on, add to, or correct existing documentation
 - https://jira.slac.stanford.edu/signup

Resources for getting started

- Discussion Forums
 - http://forum.linearcollider.org/
 - SLIC, org.lcsim
 - Not recommended
 - Spray E-mail to developers
 - Banging head against wall
 - Uninstall and reinstall software 3 times
 - Recommended
 - Post questions on the forum
 - □ You will get faster answers
 - You will get more accurate answers
 - Others will benefit from seeing answers to your questions
 - Discuss what you would like to do
 - get feedback on best practices

ALCPG Simulation Summary

- ALCPG Sim/Reco team supports an ambitious detector simulation effort.
- Goal is flexibility and interoperability, not technology or concept limited.
- Provides full data samples for ILC physics studies.
 - □ Stdhep and LCIO files available on the web.
- Provides a complete and flexible detector simulation package capable of simulating arbitrarily complex detectors with runtime detector description.
- Reconstruction & analysis framework exists, core functionality available, individual particle reconstruction template developed, various analysis algorithms implemented.
- Need to iterate and apply to various detector designs.

Additional Information

- Icsim.org http://www.lcsim.org
- ILC Forum http://forum.linearcollider.org
- Wiki http://confluence.slac.stanford.edu/display/ilc/Home
- org.lcsim http://www.lcsim.org/software/lcsim
- Software Index http://www.lcsim.org/software
- Detectors http://www.lcsim.org/detectors
- LCIO http://lcio.desy.de
- SLIC http://www.lcsim.org/software/slic
- LCDD http://www.lcsim.org/software/lcdd
- JAS3 http://jas.freehep.org/jas3
- AIDA http://aida.freehep.org
- WIRED http://wired.freehep.org