

BERKELEY

ILC Vertex Tracker Ladder Studies At LBNL

M Battaglia, D Contarato, L Greiner, D Shuman LBNL, Berkeley

Mechanical Test Facilities at LBNL

• Environmental chamber (down to -70°C) for characterization of temperature cycling and humidity effects on prototype ladders

. High resolution IR camera for studying temperature gradient of prototype ladders

 Facility for studies of cooling and mechanical stability with nitrogen and air flow, equipped with a laser holography system for real time measurement of distortions in prototype structures with sub-µm resolution

 Capacitive probe system with sub-µm resolution; study displacements and vibrations induced by air cooling or other forces

. Composite materials lab for fabrication of light structures

Lucite wind tunnel

Camera

Thin silicon ladder, tension support

1.53

1.15

Laser light source

• LCRD funding supports new program of engineering design, construction and characterization of full ladder equipped with back-thinned CMOS pixel sensors in collaboration with STAR HFT project

• **STAR** low mass carrier: 50µm CFC+3.2mm RVC+50µm CFC (=0.11%X₀)

Ladder prototype with 50 µm thin MIMOSA-5 chips	<u>Component</u>	% radiation length
	MIMOSA detector	0.0534
	Adhesive	0.0143
	Cable assembly	0.090
	Adhesive	0.0143
	CF / RVC carrier	0.11
	<u>Total</u>	<u>0.282</u>

STAR study of accuracy of chip positioning on carrier: 50 μm back-thinned MIMOSA5 are positioned using a vacuum chuck with alignment bump edge and individual vacuum chuck valves

• Mechanical and thermal characterization of STAR prototype, study of heat removal using low-speed airflow

• Vibration from air cooling measured with capacitive probe; location distribution with SD~1 μ m at 1.0 m/s airflow on unsupported end of ladder

Thin CMOS Pixel Studies

Back-thinning of diced chips using grinding process by Aptek Industries
Thinned over 15 MIMOSA5 chips, process reliable down to 40 μm, yield of functional chips~90%
Measured chips thickness: Before (550±0.5) μm

Surface map of 50 µm chip (measured)

FEA stress analysis of flattened 50 μm chip

 FEA of prototype structures (core-cooled Si/CF/RVC sandwich, Si/Al/RVC sandwich, CVD coated CF) in progress using data from surveys of 40 and 50 μm thin chips, first results promising, test of prototype in 2008

Ladder side view

Low density (0.2-0.6g/cc) High thermal conductivity (40-180W/m K) carbon foam Concept for Symmetric Ladder Sandwich Support with Air Cooling through Core

