Vertex Detector Mechanical R&D Design Questions and Issues

Bill Cooper Fermilab

Sensor Properties

- 1. For each technology, what limits are there on sensor dimensions: thickness plus each transverse dimension?
- 2. How do active and cut dimensions compare?
- 3. Does the sensor require out-of-plane features, for example, separate readout chips?
- 4. What stress and strain can a sensor tolerate without damage?
- 5. Can the sensor be formed into a partial cylinder or non-flat shape?
 - If so, what is the minimum bend radius?
- 6. At what temperature is the sensor expected to operate? Humidity?
- 7. How stable need the temperature be?
- 8. Are temperature requirements different for various sensor regions?
- 9. How uniform is the coefficient of thermal expansion through the sensor thickness and in different transverse regions?

Handling and Assembly Requirements

- 1. Where / how is a sensor to be singulated from a wafer?
- 2. How is it to be handled thereafter?
- 3. How robust are sensor surfaces?
- 4. What is known about sensor wire-bonding and bumpbonding properties?
- 5. Are sensors sufficiently flat as fabricated, or do they need to be flattened by support structures?
- 6. How sensitive is the sensor to static discharge?
- 7. In what gas environment should the sensor be maintained?
- 8. Are environmental requirements different when a sensor is not powered?

Power Consumption / Delivery

- 1. What is the expected power dissipation per unit area?
- 2. Is the dissipation uniform over the sensor or concentrated in specific areas?
- 3. If it is concentrated, what is the dissipation within each area and on each sensor surface?
- 4. If power cycling is required, is it integral with the sensor or must it be provided separately?
- 5. What are the design requirements and implications of serial power?

Controls, I/O, and Cabling

- 1. How many control signals are needed?
- 2. When and how often are they downloaded?
- 3. Are signal receivers and output drivers integral with the sensor or separate?
- 4. How are connections made?
- 5. How many separate power and signal connections are required?
- 6. Are optical transceivers incorporated in one of the sensor layers?
- 7. Are cables attached directly to sensors or via connectors?
- 8. How are cables and optical fibers anchored to prevent transmission of forces and moments into a sensor?

B-field and Implications

- 1. How sensitive is the sensor to magnetic field magnitude and direction?
- 2. How are current-carrying elements aligned with the field direction?
- 3. How are cables anchored to prevent motion due to the B-field?

Noise: Pick-up / Generation / Shielding

- 1. How sensitive is the sensor to noise pick-up?
- 2. Does the sensor or its readout generate noise which could adversely affect other portions of the detector, such as calorimetry?
 - This may be less of an issue if I/O is via fiber optics.
- 3. What are the requirements for support structure grounding?
- 4. Is a Faraday cage needed?
- 5. What about noise traveling down the beam pipe?

Geometry, Support, and Cooling

- 1. Barrel and disk support
 - Geometric acceptance
 - "Mass"
 - Ease and precision of fabrication and assembly
 - Alignment provisions and requirements
 - Vertex detector positioning relative to the beam
 - Vertex detector positioning relative to the outer tracker and other sub-detectors (calorimeters, muon system, etc.)
 - Simulations
- 2. Design and prototyping
 - Ladders and barrels
 - Wedges and disks

Geometry, Support, and Cooling

3. Cooling

- Assumed to be via dry gas
- Supply and distribution ducts and manifolding
- Vibrations, flow rates and regimes, temperatures, etc.

Installation, Servicing, and Beam Pipe

- 1. How is the vertex detector installed and aligned?
- 2. How is it serviced later?
- 3. What are the detailed paths to the outside world for power, cabling, fiber optics, and cooling gas?
- 4. If power conditioning is needed, where and how would that be done?
- 5. How is the vertex detector integrated with the beam pipe, associated "vacuum chambers", and other sub-detectors?
 - Beam pipe contour
 - Support
 - Geometry and constraints
 - Integration of the vertex detector with forward calorimetry, beam monitoring, and other sub-detectors

Technology Dependencies of Solutions

• We received a suggestion that mechanical design approaches be characterized by the extent to which they are sensor technology dependent (or independent).

- A reasonable suggestion, but beware the quicksand!

- It seems likely that some mechanical designs will be more suitable for one sensor technology than another.
- It seems equally likely that the some sensor technologies will require specific mechanical design features.
- We should be aware of those dependencies, and even tabulate them, so that they can be taken into account if resources limit our investigations.
- In the ideal world, optimal combinations of mechanical designs and technologies would become self-evident as R&D progresses.

Issues and People

- The list of issues is certainly incomplete and needs to be tuned.
- We invite people to suggest changes and to sign-up to investigate specific issues:
 - Sensor properties
 - Sensor handling
 - Power
 - Controls, I/O, and cabling
 - B-field
 - Noise, pick-up, shielding
 - Geometry, support, and cooling
 - Installation, servicing, and beam pipe
 - Technology dependencies
- We hope some names can be associated with tasks before the next meeting.