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Introduction

The Fourier analysis of TBT data has been first applied at LEP in 1992 as a tool for
measuring the uncoupled linear optics.
TBT data at the j*" BPM following a single kick in the z plane (z = =, y)

z;jL — %\ /ﬂgeiq’i A e?Q=(0i+2mm) 4

with 7 = turn number A, = |A,|e" = constant of motion

b, = p, — Q.0 (periodic phase function)

Twiss functions:
B =12;(Q.)|*/AZ p’ = arg (Z;) — 6,

Z;(Q.) = Fourier component of z;

Amplitude fit:

S, y/8Y
VPACEE
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Linear Coupling

Method of the variation of constants:
The general solution of the perturbed motion keeps the form of the unperturbed one

with constants depending on time®"

Hamiltonian in presence of a perturbation, H;,
H = [Ho + Hl](Qla eeelny D1y ---Pn) — [Uo + Ul](cla ---Czn))

Equations of motion
dc; oU
S = Yml[Cjy Cm)] -
dt oc,

When the unperturbed Hamiltonian describe the betatron motion, thus

dAz . 8U1 dA; . . 8U1

d9 A’ 0 0A,

2@ or s in our case
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For perturbation fields generating linear coupling (Guignard)

U,(a) = —[C’+(9)away + Ci(0)aza, + C_aza, + CZaza,]

a, = A, e %"

1 )} }ez‘(@m:l:@y)
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“Ansatz” (Yuri Alexahin)
az(0) = azo(0) + wZ(0)ay(0) + wi(8)a,(0)

ay(8) = ayo(6) — w_(0)ay(0) + w(0)aky(6)

Inserting into the equation of motion and keeping 1* order terms one finds the equations
for w4

: d .
2ie_’QiO£ezQi9wi(9) = C(0)
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The periodic solutions are

C1(0)

4sin w0+

e—iQi [0—6" —7rsign(60—6")]

27
w(6) = — / do’
0

with
Q+r = Q.= Qy

The functions w1+ = wye*@+9 are
e constant in coupler free regions
e experience a discontinuity —2C€/2R at coupler locations = diagnostics tool !
e are constant on the resonances Q. + Q, = int.

Minimum tune split (Guignard)

. . 1 27 . _ 27 .
A= |C_| C:l:i = %/0 df CLe™+b = nt — Qu /0 dO wye+"

7Ly

with
n+ = Round(Q, £ Q)
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Linear coupling computation through TBT analysis

TBT beam position at the | vertical BPM following a horizontal kick

{ /,6*7( —i®], + ez@%w')]AmeiQm(0j+2ﬂ'n)_l_C.C.

TBT beam position at the j-th horizontal BPM following a vertical kick

{\/ﬁiﬂ( ww+—|—e"’q’gﬂw )}A etQu(6;+27m) | ¢ ¢,

The FFT of y? at Q., Y?(Q4), for a horizontal kick (X7?(Q,,) for a vertical one) is
proportional to the coupling functions w(6;).

We get per each BPM 2 real equations in 4 unknowns. When between two consecutive
monitors there are no strong source of coupling, the four equations can be solved in

favor of wy(0;) = wi(0+1).
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Examples of Tevatron Measurements

Tevatron is a pp collider working close to the Q. £ Q,, resonances. The machine has
118 horizontal and 118 vertical BPM's. They can store 8192 positions data per BPM.
The electronics upgrade allows a high resolution (~ 50 pzm) measurement of the TBT
beam position.

Under “ideal” conditions the oscillations following a kick last some thousand turns

TBT position after a horizontal kick

TBT at 150 GeV after h-kick TBT at 150 GeV after h-kick
15
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Reconstructed Injection Optics (November 2005 data)

| |
model
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Horizontal BPM # Vertical BPM #

Horizontal Vertical
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Coupling functions (November 2005 data)
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An application program for the TBT analysis has been integrated in the TEVATRON
control system and is used routinely at shot set up for correcting the minimum tune
split A = |C_| with two skew quadrupole circuits. TEVATRON being a fast ramping
machine (83 seconds from 150 to 980 GeV), the TBT analysis is a very practical method
for measuring optics and coupling also during acceleration.

Minimum tune split measured with S.A. and computed from TBT data

! !
Spectrum Analyser @
Computed from TBT data =

e Spectrum Analyser
B TBT Analysis

Minimum tune distance

15
Iteration #
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Simulations for ATF DR

Main goal: preserve design small vertical emittance, beside optics correction.

Therefore one must correct betatron coupling and spurious vertical dispersion.

Error simulation®: gaussian random roll errors (rms value: 5 mrad) for all normal

quadrupoles (ideal model from M.Woodley).

Correction: simultaneous correction of w= and spurious vertical dispersion using all

skew quadrupoles and assuming 96 BPMs.

W- W+

0.2 Real (uncorrected) i Real (uncorrected)
0.15 ¢ Real (corrected) 1 15 ¢ Real (corrected)
0.1+ ijgg*mary (uncorrected)  * ] 1 k. Imaginary (uncorrected)
0.05 W Imagm@ry (cgrrected) o - Imaginary (corrected)

O L
-0.05
-0.1
-0.15
-0.2

0

*MADX-PTC used for generating trajectories and computing the Mais-Ripken coupled twiss

functions
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Z& Fermilab
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Table 1: Transverse Emittance

ez (nm) | €, (nm)

Nominal 0.973 0.000
with errors 0.971 0.042
(B3-tron coupling | 0.973 0.012

correction
D,, correction 0.970 0.013
correcting both 0.973 0.001
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Currently 20 BPMs are available: what can we expect?
For measuring D,, the TBT capability is not needed.
We can compensate the betatron coupling where the values of w=* are known and

correct the spurious vertical dispersion at all BPMs.
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W-

Real (uncorfected) |

Real (corrected)
Imaginary (uncorrected)
Imaginary (corrected)

BPM #
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5 mrad gaussian roll errors
corrected
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W+

Real (uncorrected)
Real (corrected)
Imaginary (uncorrected)
Imaginary (corrected)
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£,=0.022 nm (only betatron coupling correction)
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We can also correct just the coupling coefficients C'E, together with D,

Z& Fermilab

Bxll

5 mrad gaussian roll errors
corrected C+-
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96 BPMs £,=0.006 nm
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Summary

e the simultaneous correction of betatron coupling and spurious vertical dispersion
presented here looks promising

e also with 20 BPMs we should be able to see the effect of the skew quadrupoles on

the coupling functions and eventually correct the machine linear coupling

e for localizing coupling sources a larger number of observation points (BPMs) i
needed

e caution with numbers: results are just qualitative, no statistics, and in particular no
quadrupole misalignement considered!
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Machine Modeling using TBT Data

The Fourier analysis® of the measured TBT data

T, = AI\/,BT,JCOS(QSM + 07 + 2mnQg) +
Arrv/ Berr €08(Purr + 011 + 27nQ1r)
Yn = AI\/ﬁTﬂcos(qbyI + 07 + 2 Q) +
AII\/@ cos(@yrr + 011 + 2mnQrr)

gives the coupled Mais-Ripken twiss functions B.r.rr and ¢.r.11 (2 = «,y), a part for
the constants of motion Ay ry and 0y 7.

2there are other ways of analysing the TBT data, such as MIA and ICA
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The eigenvectors of the coupled transport matrix are related to the Mais-Ripken twiss

functions

Vii = VB,c08Ppr  Vie = /B, 75in dyg
Vis = V/Barr €08 Garr Via = /Borr Sin oy
Va1 = VByrcospyr  Vaz = +/B,rsin ¢yp
V33 = \/By” COS Qyrr Vaa = \/ByII Sin @y 11
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Taking into account that the BPMs may have (unknown) calibration errors and may be

tilted around the longitudinal axis® the actual eigenvector components are related to the
measured ones, Vi (¢ = BPM index), by

L [cos(8r) Vi, + Vi sin(dr)] = LVi, + XV,
A%[— Sin(st)Vfl + ‘71i2 cos(dy)] = rlvl'LZ + >7§_V312
ﬁ[005(511)ﬁi3 + V&, sin(617)] = rlivlis 4 >7f_V3z3

A%I[_ sin(drr) Vs + Vi, cos(0r1)] = Tiivlz;l + )75_:‘/;3?:4

L [cos(8r) V5, + Vi, sin(67)] = 2V, — XV},

ALI[_ Sin(éI)‘_/tg,il + ‘_/37:2 COS(5I)] — rlz‘/g"z — )75_;‘/11’2
fH[COS(5II)Zi3 + Vi, sin(d57)] = rlvgzg _ )qf_j‘/lig
fu[_ sin(drr) Vg + Vi, cos(dr1)] = %V:sial — Xy

i

2The BPM reading is related to the actual beam position by

meas r + ytany

y —xtany
T —

meas __

Ty Ty

with x = BPM tilt and r, = z/2
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Goal: adjust
e quadrupole gradient and tilt
e BPMs calibration and tilt
® A;rrand dr gy
in order to fit the values of the eigenvectors measured at the BPMs.

Data taking being very fast, this approach could be a good alternative to time consuming
Orbit Response Matrix methods.
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Application to Tevatron

e Number of observation points: 2 X 118

e Current Tevatron model (A.Valishev): 216 normal and 216 skew thin quadrupoles
to simulate gradient and tilt errors. We must add the unknown BPM calibrations
and tilts (with the additional condition < r; >=1) and the oscillation amplitude
and phase.

Attempts of using MAD-X for fitting have failed (too slow, no convergence when applied
to real data).

Project for the immediate future: write our own task-optimised minimisation code.

It could be of interest for ATF DR too. Larger the number of observation points, better
constrained is the problem, especially for finding out the model: as much as possible
BPMs should be upgraded for such an application.

Acknowledgements: Yuri Alexahin
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