L C International Linear Collider

ILCTA_NML

Thanks to Sergei Nagaitsev for use of his slides from the ILC School at Fermilab

Purpose of ILCTA_NML

- Provide ILC like beam for SCRF cavity tests
- Provide a facility for use by ILC collaborators
 - Crab cavities
 - Diagnostics
 - Personnel training
 - Accelerator R&D

Controls Focus at ILCTA_NML

- Create a stable and robust controls system for SCRF and associated components R&D
 - Provide automatic procedures for cavity and cryomodule testing
 - Provide an infrastructure that can readily integrate components developed at collaborating institutions
- Provide a venue for ILC Controls & LLRF R&D

Opportunities for Controls R&D

• Timing systems

- RF Phase and Distribution
- Data correlation
- Clock System Development
- High Availability Platform for Beam Instrumentation
 - BPMs
- Beam Based Feedback
- Cavity Data Management
- Automation

S2 Task Force

Phase	Completion date	Description
0	2005	TTF/FLASH, not final cavity design, type 3 cryomodule, not full gradient, has beam but work is needed to have regular ILC bunch structure, roughly 2 RF units.
1	2008	1 cryomodule, not final cavity design, type 3 cryomodule (and/or) STF type cryomodule, not full gradient, no beam
1.1	2009	1 RF unit, not all final cavity design, not all type 4 cryomodules, not full gradient, beam not needed for tests, but should be built so it and the LLRF are debugged for the next step
1.2	2010	1 RF unit (replacing cryomodules of phase 1.1), final cavity design, full gradient, type 4 cryomodules, with beam
1.3	2011	1 RF unit (replacing cryomodules of phase 1.2), final cavity design, full gradient, type DFM cryomodules, with beam
1.4	2011	Tunnel mockup above or below ground. 1 RF unit perhaps built with parts taken from earlier tests. Includes RTML and e+ transport, no beam
2	2013	Several RF units at one site (of the final ILC?) as a system test of final designs from multiple manufacturers. Need for beam depends on design changes made after phase 1.4.
3	2013	XFEL
4	2018	First 2.5 km of ILC

ILC basic design parameters

Center-of-mass energy range	GeV	200-500
Peak luminosity ¹	cm ⁻² s ⁻¹	2×10 ³⁴
-		
Beam current	mA	9.0
Pulse rate	Hz	5.0
Pulse length (beam)	ms	~1
Number of bunches per pulse		1000-5400
Charge per bunch	nC	1.6-3.2
Accelerating gradient ¹	MV/m	31.5
RF pulse length	ms	1.6
Beam power (per beam) ¹	MW	10.8
Typical beam size at $IP^1(h \times v)$	nm	640×5.7
Total AC Power consumption ¹	MW	230
 at 500 GeV center-of-mass energy 		

• Bunch length at IP (rms): 0.3 mm or 1 ps or 0.5° (1.3 GHz)

LInternational Linear Collider

RTML bunch compressor (key

Parameter	Nominal BC1 Value	Nominal BC2 Value
Initial energy	$5 \mathrm{GeV}$	$4.88 {\rm GeV}$
Initial energy spread	0.15%	2.5%
Initial bunch length	$9 \mathrm{mm}$	1.0 mm
RF voltage	$448~{\rm MV}$	11.4 GV
RF phase	-105°	-27.6°
Wiggler R_{56}	$-376 \mathrm{~mm}$	-54 mm
Final energy	$4.88 {\rm GeV}$	$15.0~{ m GeV}$
Final energy spread	2.5%	1.5%
Final bunch length	1.0 mm	0.3 mm

International Linear Collider

IP offset defines the time jitter of the collision point

L C International Linear Collider

International Linear Collider

ILCTA Plans

- Effort is Funding limited → phased approach
- Cryomodule delivery
 - 1st (Type 3+) cryomodule being assembled now from "kit" of DESY
 - 2^{nd} (Type 3+) CM 2008 built with U.S. processed cavities
 - 3^{rd} (ILC Type 4) CM 2009 all U.S. components
 - Replace all three CMs with ILC Type 4+ in FY2010
- FY07: Start as a Cryomodule Test Stand
- FY08: move A0 photoinjector, start civil construction for new bldg
- FY09: 1st beam operation, 2-3 CM, low rep rate operations
- FY10: replace all 3 CM with ILC type CM
- FY11: install new refrigerator, ILC RF Unit operations
- Collaboration: DESY, INFN, ANL, Cockroft, NIU, Rochester, KEK

A0 Photo Injector

- The A0 Photo Injector built in collaboration with DESY as part of the TESLA collaboration (essentially a copy of TTFI)
- In operation since late 90's
- Two klystron-based RF systems power the RF Gun & Capture Cavity
- Built a second capture cavity (CCII) using high gradient DESY cavity
- A0 RF assets and CCII will be moved to NML in 2008

Scope of LLRF Projects

- Vertical Test Stand
 - Cavity testing with automation analog LLRF (TD/Jlab)
- Horizontal Test Stands
 - Dressed cavity testing DESY/FNAL LLRF controller(Simcon)
 - Simcon is a 10 channel input VME controller developed for DESY
- High Intensity Neutrino Source HINS
 - 325 MHz, Fast Ferrite Vector Modulator -, LBNL/SNS//FNAL
- Coupler Conditioning Stand
 - 1.3 GHz and 3.9 GHz rack and stack -> Simcon
- NML Full RF Unit Test no beam
 - 3 Cryomodules with 24 cavities Simcon followed by FNAL design (MFC Module)
- NML Photo Injector Source beam to test string
 - Beam based calibration, beam loading, phase reference line Simcon

International Linear Collider

Our Path to Meet these Goals

- Evolve the 10 channel DESY Simcon system
 - Higher Intermediate Frequency development
 - Fermilab is producing a next version Simcon card to improve noise and bandwidth performance
 - Status: close to production
- Develop a Multi-Channel Field Control Module (MFC)
 - 33 ADC channels, FPGA, DSP, 4 DAC channels
 - High density, low cost, low power and is based on VXI
 - Status: Front-end testing complete, close to production
- Develop the analog RF sections
 - 96 channel receivers
 - Transmitter
 - Master Oscillator
 - Phase Reference Distribution with pulsed reference line

C International Linear Collider

Prototype Master Oscillator

1300 MHz low noise DRO: 10MHz VCXO: Programmable frequency outputs

Prototype LO Gen/Down-converter 1313 MHz Local Oscillator

CC2 Results with 13 MHz IF

17

ILC International Linear Collider Piezo-electric Control of CC2

The Piezo-electric actuator counteracts the Lorentz force to maintain the cavity on resonance

Cavity field @ 25 MV/m

Piezo Drive -green Cavity Probe - Cyan Reflected Power - Magenta

LC ESECON 10 channel LLRF controller

LC 10 channel LLRF controller measurements

- Crosstalk on ADC2 when ADC1 input is 2V pk-to-pk , 62.5MHz.
- Histogram is average of 10 65K, samples, individual sigma is 0.9 Controls & LLRF EDR Kick-off Meeting, Aug 20-22, 2007

10 channel LLRF controller measurements This plot is still preliminary

Controls & LLRF EDR Kick-off Meeting, Aug 20-22, 2007

International Linear Collider

Conclusions

- For a single RF unit:
 - Need a bunch compressor to resolve 0.05-degrees or 100-fs. Bunch length of 1-ps should work, 10-ps will not.
 - Can not run beam close to zero-crossing because of energy spread induced by rf slope and low injection energy.
 - Need also to measured the incoming bunch-to-bunch energy jitter so this calls for dispersive section (a compressor) before the CM
- For two RF units:
 - Need two rf units or, at least, two rf systems powering two cryomodules
 - Does not require bunch arrival jitter measurements.
 - Can run beam at zero-crossing