

Reference Design of the ILC RTML

PT SLAC

RTML Kick-Off Meeting

Global Design Effort

1

- RTML Functions and Design
- Cost breakdown
- Technical Systems
- Wrap-up

RTML Functions

"The function is a task, action, or activity which must be performed or achieved. It is the specific purpose or intended use for something. The VM Process requires that the description of a function be reduced to the simplest and most accurate expression possible. This is accomplished by employing only two words, an active verb and a measurable noun, to define the function."

US DOE Policy 413.2, Value Management

- Transport Beam
 - (or, Match Geometry)
- Collimate Halo
- Rotate Spin
- Compress Bunch
- Preserve Emittance
- Protect Machine

Geometry Matching

- DR location:
 - Center of ILC Site
 - ~10 m above plane of BDS
- ML upstream location
 - Near extreme ends of ILC site
 - In the "plane" of BDS
- RTML needs to connect these two systems
 - Down to linac level
 - Out past end of linac
 - Leave room for BC
 - Turn beam around
- Additional constraint: injectors
 - Share the tunnel with RTML
 - Need to keep geometries synchronized

Geometry Matching (2)

- Horizontal Arc out of DR
- ~km straight

Iİ.

- In injector tunnel
- "Escalator" vertical dogleg
 down to linac tunnel
- ~11 km FODO lattice
 - In linac tunnel
 - Vertically curved to ~match gravitational equipotential
- Vertical and horizontal doglegs
- Turnaround
- 8° arc in spin rotators
- BCs are net straight

DRX Connection

- DR-RTML hand-off point defined
 - Point in extraction system where $\eta,\eta' \rightarrow 0$
- RTML system mostly defined by need to follow LTR geometry
 - Stay in same tunnel
- Design is OK at conceptual level
 - LTR-RTML x offset as large as
 2.1 m needs to be fixed
 - Uses Keil-style dispersion matching
 - Requires separate PS for matching bends

RTML Kick-Off Meeting

DRX Connection (2)

- Current design is entirely planar
 - All bending in xz plane
- DRs are in different planes
- Sources need cryomodules and SC solenoids
 - Big heavy objects which want to sit on the floor
- Working agreement between sources, DR, RTML, CFS:
 - Lower ring is e-
 - CMs and SC solenoids always sit on floor
 - RTML hangs from source tunnel ceiling at same location as in linac tunnel

DRX Connnection (3)

- Current design does not incorporate optics to manage vertical offsets
- Probably implies changes to LTR design as well, maybe DR inj / ext lines?
- Not yet examined / resolved other possible conflicts with source beamlines

"Getaway" Straight (or "DR Stretch")

- About 1.1 km long
- Has two parts
 - "Low-beta" region with decoupling and emittance measurement
 - "High-beta" region with collimation system
- Includes PPS stoppers
 - For segmentation
- Good conceptual design
 - Need to match exact required system lengths
 - Need to consider conflicts with source beamlines in this area
 - Beta match between lowand high-beta optics not great

Escalator

- Vertical dogleg
 - Descends 7.85 meters over ~590 m
 - < 1° slope
 - Uses 2 vertical arcs separated by weak FODO lattice

- Good conceptual design
 - Geometry match not exact
 - Uses Keil-style eta matching
 - Beta match between "strong" and "weak" lattices not great
 - Positron return line confilicts?

- Escalator-linac tunnel connection does not match CFS design
 - Optics design:
 beamline comes down from above and joins line in ML tunnel
 - CFS: Escalator comes down next to ML tunnel, connects in horizontal plane
- Need to make these match

Return Line

- Weak FODO lattice at ML ceiling elevation
- Vertically curved tunnel thru ML area
 - Dispersion matching via dipole correctors
- Laser-straight tunnel thru BC area
- Electron line 1.2 km longer than positron
 - Goes thru undulator area
- System lengths probably not exactly right
- Electron Return line and positron transfer line need to be exchanged

RTML Kick-Off Meeting

Turnaround

- Actually does 3 jobs
 - Turns the beam around
 - Note: need to bend away
 from service tunnel
 - Brings beam down from ceiling to linac elevation (near floor)
 - Vertical dogleg
 - Adjusts x position to meet linac line
 - Horizontal dogleg
 - Order: H dogleg, V dogleg, turnaround

Why is there a horizontal dogleg in front of the turnaround?

- Without the dogleg, "bare" turnaround produces a shift $\Delta x = 1.44$ meters
- From CFS drawings, need a shift of $\Delta x = 1.59$ meters
- Could in principle achieve the same offset by reducing the mean curvature of the turnaround by 10%
- Would increase length of turnaround ~10%
- Turnaround tunnel is drill and blast, very expensive per linear foot compared to TBM
- Putting in a dedicated dogleg seemed a better solution
- Easier to adapt dogleg solution as design evolves and horizontal offset changes

Turnaround (3)

- Selected geometry uses a big arc followed by a small reverse arc
- Could also select the opposite geometry – small arc, big reverse arc
 - Advantage: smaller site footprint
 - Disadvantage: need to add 3 cells to turnaround
 - Cost of contents
 - Cost of drilled tunnel vs TBM tunnel
 - Disadvantage: beamline crosses itself
 - Correction = move VDOG into turnaround, thus increasing length of drilled tunnel even more

Bunch Compressor Geometry

- Bunch compressor is net straight
 - No net bend, no net offset
- Simplifies site geometry
- Allows use of chicane or wiggler BCs
 - Easy to adjust momentum compaction
 - Increases flexibility of BC
- Rules out use of arc or dogleg BCs
 - Potentially useful optical properties
 - Was fine pre-Valencia
 - Smaller longitudinal emittance from DR
 - So far still seems acceptable
 - Still understanding all the issues in longer bunch from DR, momentum compaction from DRX arc + turnaround

RTML Kick-Off Meeting

Pulsed Extraction Lines

• Current design calls for 3

- After DR Ext, diagnostics, global correction

- Keep DRs running @ full power during access
- Keep DRs and extraction tuned during access
- MPS abort
- After BC1
 - Tune up BC1 without beam in BC2
 - MPS abort
- After BC2
 - Tune up BC2 without beam in linac
 - MPS abort
- All have 220 kW beam handling power
 - Full power for DRX, BC1
 - 1/3 power for BC2
- No real designs for these in RDR
 - Side effect of post-Vancouver redesign
- Designs being developed now
 - Do we need all 3?
 - Do they all need 220 kW power handling?
 - Do they all need MPS abort capability?

- SLC experience:
 - Halo collimated at end linac + FF was ~10⁻³ of total beam power
 - All halo seemed to be from DR
- ILC specification:
 - BDS wants to limit halo at end linac to ~10⁻⁵ of total beam power
- Want to collimate after DR
 - Assume SLC experience relevant to ILC, and set BDS specification as requirement
 - Halo power ~ 220 W
 - Must reduce halo by 2 orders of magnitude
 - Provide machine protection
 - Collimators stop out-of-control beam from DR
 - Need to keep out-of-control beam from frying collimators, too!

Halo Collimation (2)

- Main collimation in "Getaway" Straight after laser wire detectors
 - 2 phases x 2 planes x 1 iteration
 - Never checked collimation efficiency – assumed to be OK (only need 100x attenuation @ 5 GeV)
 - Still need final energy collimation
 - Clean up scattered particles with reduced energy
 - Dedicated chicanes? Or into dogleg which will go at bottom of escalator?
 - Spoiler / Absorber scheme
 - Absorbers protected by MCS in spoilers
 - Spoilers protected by proximity to DR extraction kickers
 - Need to recheck collimator wakefields
 - Quick look said it was OK
 - Needs more thorough recheck and documentation

RTML Kick-Off Meeting

Global Design Effort

19

- Need energy collimators after betatron collimation system
 - Scattered particles
 - Off-momentum particles / bunches from DR
- Additional energy collimators
 - In BC1 wiggler
 - In BC2 wiggler
- Need to understand machine protection issues for these collimators
 - They are a long way from DR ext kickers!

Spin Rotation

- Design based on Emma's from NLC ZDR
 - 2 solenoids with Emma rotator between them
 - Rotate spin 90° in xy plane while cancelling coupling
 - 8° arc
 - Rotate spin 90° in xz plane
 - Another 2 solenoids + Emma rotator
- Basic design seems sound
 - Very small loss in polarization from vertical bending in linac tunnel
- Important issue = bandwidth
 - Off-energy particles don't get perfect cancellation of dispersion and coupling

RTML Kick-Off Meeting

- Longitudinal emittance out of the DR:
 - 9 mm RMS length
 - 0.15% RMS energy spread
- Want to go down to 0.2-0.3 mm RMS at IP
 - Need some adjustability
- Use 2-stage BC to limit max energy spread
 - Compress to ~1 mm at 5 GeV
 - Accelerate to ~15 GeV
 - Compress to final bunch length
- DRX arc and turnaround have R₅₆ = 2.9 m
 - Need to include this in design

Twiss functions of Downstream RTML

Bunch Compression (2)

 BC1 has 3 CMs with quad packages

İİL

- Long bunch need stronger focusing for WFs and cavity pitches
 - Not optimized
- 1 RF source + 1 spare with waveguide switch
- Low gradient, decelerating
 - T₅₆₆ compensation
- BC2 has 14 linac-style RF units + 1 spare unit
 - Gradient ~same as ML
- Both stages use 6-cell lattice with quads and bends to achieve momentum compaction
 - "Wiggler"

Parameter	Nominal Value	LowN Value
Initial E	5.00 GeV	5.00 GeV
Initial σ_z	0.15%	0.15%
Initial σ_{δ}	9 mm	9 mm
BC1 Gradient	18.0 MV/m	18.1 MV/m
BC1 Phase	-104.9°	-105°
BC1 R ₅₆	-376 mm	-353 mm
Post-BC1 E	4.88 GeV	4.88 GeV
Post-BC1 σ_z	~0.9 mm	~1.3 mm
Post-BC1 σ_{δ}	~2.5%	~2.5%
BC2 Gradient	30.2 MV/m	31.0 MV/m
BC2 Phase	-27.6°	-40.9°
BC2 R ₅₆	-55 mm	-47 mm
Final E	15.0 GeV	13.7 GeV
Final σ_z	0.3 mm	0.2 mm
Final σ_{δ}	1.5%	2.7%

Bunch Compression (3) – Wiggler Design

- Need to be able to adjust R₅₆ of wiggler
 - Implies change of trajectory through bends
- Need to have some locations where the trajectory does not vary
 - BPMs, quads, collimators
- Led to a complex design
 - 8 bends per half-cell
 - 1st and 8th bend fixed in strength
 - Other bends adjustable

Trajectories in one BC2 cell WRT tunnel axis for 2 BC Configurations.

Bunch Compression (4) – Wiggler Design (2)

- Variation of trajectory in bends \rightarrow wide poles and large good-field region required
 - Makes BC bends more expensive
- Current design calls for ~40 cm pole width for BC1 bends
 - Larger than variation in trajectories
 - Legacy of 2006 design
 - Had 2 configurations for each bunch length
 - "Alternate" configs had smaller emittance growth but larger R_{56} in BC1
 - Right now, no "Alternate" BC configs
 - Working to develop them
 - Need to evaluate whether they are worth the extra cost and complexity in BC wiggler

İİL

- An alternate bunch compressor design exists
 - 6-cell wigglers (~150 m each, 102 bend magnets) replaced by chicanes (~40 m each, 4 bend magnets)
 - Advantages
 - Shorter
 - Simpler
 - (Presumably) Cheaper
 - Disadvantages
 - Big x offset from straight line (~1.8 m)
 - Doesn't have natural locations for dispersion tuning quads
 - Needed to manage cavity pitches as well as "real" dispersion
- Need to carefully evaluate the two existing BC schemes
 - Maybe neither one is optimal?

Emittance Preservation

Or, more generically, "Luminosity Maximization"

- Sources of luminosity degradation we've thought about
 - Synchrotron radiation
 - From DRX arc, turnaround, BC wigglers
 - Beam-ion instabilities
 - Beam jitter
 - From DR
 - From stray fields
 - Dispersion
 - DR extraction
 - Misaligned quads
 - Rolled bends
 - Coupling
 - DR extraction septum
 - Rolled quads
 - Misaligned bends
 - Quad strength errors in spin rotator
 - Pitched RF cavities
 - Produce time-varying vertical kick
 - RF phase jitter
 - Varies IP arrival time of beams
 - Beam halo formation
 - Collimator Wakefields
- Sources we haven't thought enough about
 - Space charge
 - Resistive wall wakes in vacuum chamber

- Synchrotron Radiation
 - Mainly managed by optics design
 - 0.9 µm emittance growth in x
 - ILC budget for x emittance growth from all sources, all areas = 2.0 µm
 - Vertical bends in Escalator, Dogleg negligible
 - Analytic estimates indicate no CSR issues
- Beam-ion instabilities
 - Sets 20 nTorr pressure limit in Return line
 - Limits jitter growth to 9% (ie, jitter out = 1.09 * jitter in)
 - For LowN, low bunch spacing
 - If LowN case eliminated, pressure spec can be relaxed

- Beam Jitter
 - Handled by feed-forward in turnaround and living clean
 - Sets limits on tolerable AC fields in Return line
 - ~ 2 nTesla limit, comparable to measured value in ESB @ SLAC
 - Can be improved by intra-train feedback as well
 - Not in baseline
- Halo formation
 - Not a problem in Return line
 - · Vacuum spec for ions much tighter than spec for halo
 - Sets 100 nTorr vacuum spec downstream of Return line
 - Results in 10⁻⁶ halo formation
- Collimator Wakefields
 - Y wakes seem marginal for "razor blade" collimators
 - Probably OK for tapered collimators
 - Need to revisit this issue!
 - Are standard expressions useful for 9 mm bunch length?
 - Are all wakes of full system included? (Resistive wakes of absorbers, etc)

- Dispersion
 - Local correction via steering / orbit control
 - BBA quads have individual power supplies
 - BPM at each quad
 - Y corrector at each quad, X corrector at each F quad
 - Global correction via normal / skew quads in locations with dispersion
 - DRX arc
 - Escalator (in principle)
 - Turnaround / vertical dogleg
 - BC1 / BC2 wigglers
 - Sets requirement for 6 cells with 90/90 phase advance
- Coupling
 - Global correction via orthonormal skew quads
 - Two decoupling systems
 - After DRX arc
 - After spin rotator
- Pitched RF cavity
 - Global correction via BC dispersion knobs
 - YZ coupling (pitch) + ZE coupling (off-crest running) = YE coupling (dispersion)

- How well can we correct dispersion, coupling, cavity pitch?
 - Studies with 2006 (pre-Vancouver) optics + Return line OK except for BC1 cavity pitch
 - Can get in the realm of RTML emittance budget (4 nm vertical growth, 90% CL)
 - BC1 cavity pitches blew budget by ~factor of 2
 - Preliminary result no attempt to improve upon this was made!
 - Need to revisit in a more complete manner with up-to-date optics
 - Likely to get worse

Luminosity (6) – RF Stability

- Impacts luminosity through arrival time variation
- Nominal (0.3 mm RMS bunch length) case:
 - 0.24° RMS jitter of e- and e+ RF systems with respect to common master oscillator \rightarrow 2% loss in integrated luminosity
 - · Assumed e- and e+ jitter not correlated with each other
 - · Assumed all RF stations in e- system have same jitter
 - If jitter within e- / e+ systems uncorrelated, relaxes tolerances
 - 0.5% voltage jitter of e- and e+ RF systems wrt mean \rightarrow 2% loss in integrated luminosity
 - Similar assumptions and issues as for phase
 - Lumi loss grows ~as square of RMS jitters
- Short bunch case:
 - No study done, but tolerance probably scales with bunch length
 - IE, 0.16° RMS jitter or 0.35% voltage \rightarrow 2% loss in integrated luminosity
- Assumed 3 levels of stabilization:
 - Time scales up to ~1 second
 - LLRF just has to achieve the necessary stability
 - Time scales from ~1 second to ~minutes
 - Measure and correct IP arrival times
 - Takes out slow drifts in LLRF
 - Time scales > ~minutes
 - Dither feedback maximize lumi as function of controlled variation in arrival times
 - Takes out slow drifts in arrival time measurement system

RTML Kick-Off Meeting

- RTML has machine protection issues ~similar to everywhere else in ILC
 - Possible exception: collimators
- RTML has 3 MPS intra-train extraction points
 - **DRX**, **BC1**, **BC2**
 - Do we need all of these?
 - Thought we did before central injector redesign
 - Need to rethink now in context of overall MPS design for ILC

Cost and its Distribution

- CFS + BC RF system = 68% of costs
 - Correlated much of CFS cost is housing for BC cryomodules
- Remainder dominated by NC beam transport
 - Quads, correctors, BPMs, vacuum system
- Small amount of "exotica"
 - Non-BPM instrumentation, controls, dumps, collimators

More details in cost talk later today

RTML Kick-Off Meeting

Technical Systems

- Magnets and power supplies
 - See talks later today!
- Vacuum system
 - Current baseline
 - 2 cm OD stainless chambers
 - Exceptions: BC bends, extraction lines, CMs
 - 20 nTorr in long line from DR to turnaround
 - Passivated to reduce outgassing rate
 - 100 nTorr in balance of system (turnaround to linac)
 - Not in situ baked
 - No photon stops or water cooling in bend areas
- Dumps and Collimators
 - 3 dumps per side with 220 kW capacity
 - Betatron and energy spoilers / absorbers with ~200 W capacity

- Instrumentation
 - BPMs at every quad, plus high dispersion points in wigglers
 - Serve a number of functions: feedback, feed-forward, beambased alignment and steering, energy diagnostic
 - Original plan: dominated by room-temp C band cavity BPMs
 - Long DR bunches \rightarrow L-band cavities may be more suitable upstream of BC2
 - Larger cost, larger tunnel footprint, lower natural resolution?
 - 3 suites of laser wires in each RTML
 - 4 wires per suite, set up for 2D emittance measurement
 - Bunch length measurement
 - LOLA + screens in each BC
 - Originally used 2.9 GHz SLAC cavities as model
 - Want to go to either 2.6 or 3.9 GHz need to choose!
 - Possibly EO monitors (not in RDR baseline, I think)
 - SLMOs in BC wigglers for energy spread measurement
 - 3 dedicated phase monitors per side

Technical Systems (3)

- 1.3 GHz RF system plus supporting utilities
 - 48 CMs per side
 - 3 "8Q" in BC1
 - 15 x "9-8Q-9" in BC2
 - 1 RF source per 3 CMs, as in linac
 - BC1: 2nd source with RF switch for redundancy
 - LLRF issues
 - Phase stability, as discussed before
 - Beam loading compensation
 - Beam loads RF at decelerating phase
 - Unlike ML, need to "jump" both amplitude and phase of RF source @ beam time

- Cryo system

- Part of ML cryogenic system
 - Also supports SC solenoids in spin rotator
- BCs are laser-straight
 - Probably OK only ~1 km long

ilc

Wrap-Up

(Calling these "conclusions" is probably an exaggeration)

- RTML is a large system by any standard
 - Total length > ILC footprint
 - Total number of components enormous
 - Combined e+,e-RF systems > XFEL's
- Impressive amount of design work done for RDR, nonetheless...
- ... Technical maturity of RTML design is lagging
 - Missing beamlines
 - Performance studies out of date and inadequate
 - Area, Technical, Global, Cost information are not consistent with each other
 - Many (most?) hardware performance specifications unknown
 - Required functions of various subsystems not reviewed

