

1

Ring to Main Linac Magnets

V. Kashikhin for ILC Meeting (with some JCT additions) August 27, 2007 ILC International Linear Collider

The vast majority of RTML magnets are room-temperature electromagnets. There are a few quads and dipole corrector magnets which are inside the BC1 and BC2 cryomodules, these are necessarily superconducting. There are also 4 superconducting solenoid magnets in the spin rotator which are superconducting.

Most of the quadrupole magnets must be capable of performing beam-based alignment (BBA). In particular, each quad must have the capability of being reduced in strength by 20% from its nominal strength. In the current design we have chosen to achieve this by giving each quadrupole its own power supply. In addition, the center stability of the quadrupole over the aforementioned 20% reduction in strength must be at the level of 1-2 micrometers.

Each dipole corrector has its own power supply. Bend magnets and solenoids are generally powered in strings. There are no magnet movers in the RTML.

Most warm magnets have a full aperture of 2 cm and all cold magnets have a full aperture of 7.5 cm (or whatever is eventually decided for the linac quads). A few magnets in the BC1/BC2 extraction line have larger apertures to accomodate the large beams in these regions. The BC1 and BC2 bend magnets are special in that their bending angles must be varied in order to adjust the momentum compaction (and thus the compression factor) of their systems. This implies that the path through the magnets in the horizontal plane is a function of the bunch compressor settings; this further implies that the bend magnets have to have a very wide opening with a good field over a considerable fraction of that opening – in particular the BC1 bends need a 40 cm wide aperture, while the BC2 bends need a 10 cm wide aperture; but both sets of bends can tolerate an aperture which is only 2 cm tall. Apertures here refer to pole-piece apertures, not vacuum chamber apertures.

Most magnets in the RTML are DC magnets. A few of them are pulsed bends (which need to come on in the intra-train period of 200 msec), some others are kickers (which need to come on in the 150 nsec intra-bunch period), and a couple are corrector magnets for the steering feed-forward which need to be able to change their field on a bunch-by-bunch timescale within a train. Finally, there are "raster" correctors which keep the bunches from all hitting the same spot on the dump window. This may not be necessary, but it seems prudent to reduce the stress on the dump window as much as possible. (RTML WEB Site)

TTAL Magnet Specifications

3

		SECTOR BE	NDS		baum, Apr						
Remarks	Modified Sty	Family	Leff [m]	Max IntB	Min IntB	Gap heig	l Count (e+	Notes			
Maybe	D25L100 cori			0.028302					confirmed		
		D25L900V1	0.9	1.059074	0.162888	0.0254	128				
		D25L900V2	0.9	0.904736	0.02586	0.0254	144	Requires	~40 cm wi	de good fie	ld region
		D25L900V3	0.9	0.647594	0.068687	0.0254				de good fie	
Yes	D25L1600	D25L1600	1.6	0.625466	0.572341	0.0254				<u> </u>	
Maybe		D25L1800		1.401045							
Mabye		D25L1900	1.9		0.626371						
Probably no		D25L2300	2.3	1.823498			180				
,,,,,		Total Sector					704				
			Donad								
		QUADS									
		Family	Leff [m]	Max IntG	Min IntG	Full apert	t Count (e+	Notes			
		Q20L100	0.1								
		Q20L200		17.51959							
Maybe	Q20L200	Q20L200		6.647933							
Maybe	Q20L200	Q20L400		13.29587							
		Q60L200	0.0								
		QSC75L200		2.434295				SC Quad	in Cryomo	ماييله	
		Total Quads		2.434233	0.000403	0.075	1562	JC Quau	in ciyomo	uure	
		Total Quaus					1302				
		DC CORREC	TOPS								
			Leff [m]	May IntB	Min IntB I	Eull anor	t Count (e+	Notoe			
		D20LXXX	TBD	0.052559							
		DSC75LXXX		0.007303					ctor in Cryo	medule	
	DSC/SL200			0.007303	-0.00695	0.075		SC Correc	ctor in Crye	omoaure	
		Total DC Co	rrectors				2294				
		FEED-FORW									
		Family					t Count (e+	Notes			
		D20LXXX	TBD		2.17E-05	0.02	-				
		Total Feed-f	orward Co	orrectors			8				
		SOLENOIDS									
			Leff [m]				t Count (e+				
	SLSC50L300			13.09851	13.09851	TBD		Supercon	ducting So	lenoid	
		Total Solen	pids				8				

ILC International Linear Collider

1		RTML Ma	anets May	3.200)7										
2		V.S.Kashikhi													
3															
4		NC - normal	conductor												
5		SC - Superce													
6		Q20L200 Q	uadrupole 2	20 mm a	perture diar	neter and 2	00 mm magne	t effective len	gth						
7							th in most case			ariant 1 (dif	ferent ga	p width)			
8		Lefm, m - m	odified effe	ctive ler	ngth							1			
9		Gm, Bm - me	odified qua	drupole	gradient an	d dipole fie	ld								
10															
11]	
12														Ţ	
	Name	Count 2 RTM	Type	Int.Str.	MaxG,B	Lefm.m	NC Quads	SC Quads	Bends	Solenoids	Kickers	Bumps	Septums	NC Correctors	SC Correctors
14	QRTML1		Q20L100	0.400					Donao			2 ampo	Coptanio		
	QRTML2		Q20L200	17.520											
	QRTML3		Q20L400	6.650											
	QRTML4	44	Q20L800	13.300											
	QRTML5		Q60L200	3.714		0.2									
19															
20	QRTML6	36	QSC75L200	2.430	12.150	0.2		36							
21															
22	DRTML1	32	D25L400	0.028	0.071	0.4			704						
23	DRTML2	128	D25L900V1	1.060	1.178	0.9									
24	DRTML3	144	D25L900V2	0.904	1.004	0.9	b=40 cm								
25	DRTML4	144	D25L900V3	0.650	0.722	0.9	b=10cm								
26	DRTML5		D25L1600	0.625		1.6									
27	DRTML6		D25L1800	1.400	1.299	1.8									
			D25L1900	1.794		1.9									
29	DRTML8	180	D25L2300	1.823		2.3									
30															
	SLRTML1	8	SL20L2600	13.099	4.999	2.62				8					
32															
	DCRTML1		D20L50	0.053		0.07								2004	
	DCRTML2	54	DSC75L200	0.007	0.073	0.1									84
35															
36	Total	4576													

ILC International Linear Collider

	A	В		С	D	E	F	0	Н			LZ.	1	k.d.	N	0	Р	Q	R	S	т
4	A			U U	D			G			J	K	L	M	N	0	F	Q	R	3	
2						Magnet	Param	eters	, May :	3, 2007											
-		0		T				~	vo										D. 01		D.144
		Count 2 RT	ML	Туре	int.str.	махс,в	Lefm,i	xgap	YGap	spole,	lw/pole,A	I,A	WC	Lcu,r	i qcu,mr	Vcu,m3	mcu/mag,t	Mcu,tons	RW,ONM	U,V	P,W
	DC Quadrup	ooles		0.001 400							4.075.00					0.0004		0.04	4.00		-
	QRTML1			Q20L100	0.400	4.000	0.1		0.02		1.67E+02	2	84		-	0.0001	0.0009	0.01	1.93	3.9	
	QRTML2	14		Q20L200	17.520	87.600	0.2		0.02		3.66E+03	20	183		10	0.0039	0.0344	48.94	0.77	15.5	
	QRTML3			Q20L400	6.650	16.625	0.4		0.02	0.166		20	35			0.0014	0.0125	0.10	0.28	5.6	
-	QRTML4			Q20L800	13.300	16.625	0.8	0.02	0.02		6.95E+02	20	35			0.0028	0.0245	1.08	0.55	11.0	
	QRTML5		36	Q60L200	3.714	18.570	0.2	0.06	0.06	0.557	6.99E+03	200	35	87	50	0.0044	0.0388	1.40	0.03	7.0	1395
	SC Quadrup	oles				40.450					0.405.00		400								
	QRTML6		36	QSC80L200	2.430	12.150	0.2	0.08	0.08	0.486	8.13E+03	50	163	SC	SC	SC	SC	SC	SC	SC	SC
	DC Dipoles																				
	DRTML1			D25L400	0.028	0.070	0.4		0.03		7.31E+02	50	15			0.0002	0.0018	0.06	0.03	1.3	
	DRTML2			D25L900V1	1.060	1.178	0.9	0.03	0.03		1.23E+04	50	246		12.5	0.0070	0.0624	7.99	0.90	44.9	
	DRTML3			D25L900V2	0.904	1.004	0.9	0.4	0.03		1.05E+04	50	210		12.5	0.0083	0.0743	10.69	1.07	53.4	
	DRTML4	1		D25L900V3	0.650	0.722	0.9	0.1	0.03	0.722		50	151	371	12.5	0.0046	0.0413	5.95	0.59	29.7	1485
	DRTML5		-	D25L1600	0.625	0.391	1.6	0.03	0.03	0.391		50	82		12.5	0.0040	0.0360	0.29	0.52	25.9	
	DRTML6			D25L1800	1.400	0.778	1.8	0.03	0.03	0.778		50	163		12.5	0.0090	0.0803	0.96	1.15	57.7	2887
	DRTML7			D25L1900	1.795	0.945	1.9	0.03	0.03		9.87E+03	50	271		12.5	0.0191	0.1699	9.52	2.44	122.2	6110
	DRTML8	1	180	D25L2300	1.823	0.793	2.3	0.03	0.03	0.793	8.28E+03	50	271	1267	12.5	0.0158	0.1410	25.38	2.03	101.4	5069
21																					
	DC RT Corr																				
	DCRTML1	22	248	D20L50	0.053	1.050	0.05	0.02	0.02	1.050	8.78E+03	5	1756	379	2.5	0.0009	0.0084	18.97	3.03	15.2	76
24																					
	DC SC Corr	ectors																			
	DCRTML2		54	DSC80L200	0.0073	0.037	0.2	0.08	0.08	0.037	1.22E+03	100	12	11	SC	SC	SC	SC	SC	SC	SC
27																					
	SC Solenoi	ds																			
	SLRTML1		8	SLSC20L260	13.099	4.999	2.62	0.02	0.02	4.999	4.02E+06	####	1005	221	SC	SC	SC	SC	SC	SC	SC
30																					
	Total	48	576														Total Cu,to	131.3			
32																					

The following changes have been proposed by the Magnets TS group and approved by the RTML AS group.

Turnaround corrector quads (CQTURNn and SQTURNn magnets) will be changed to a 6 cm full aperture (current value is 5 cm).

Extraction line quad QDBCDL3 will be changed to a 6 cm full aperture (current value is 3 cm).

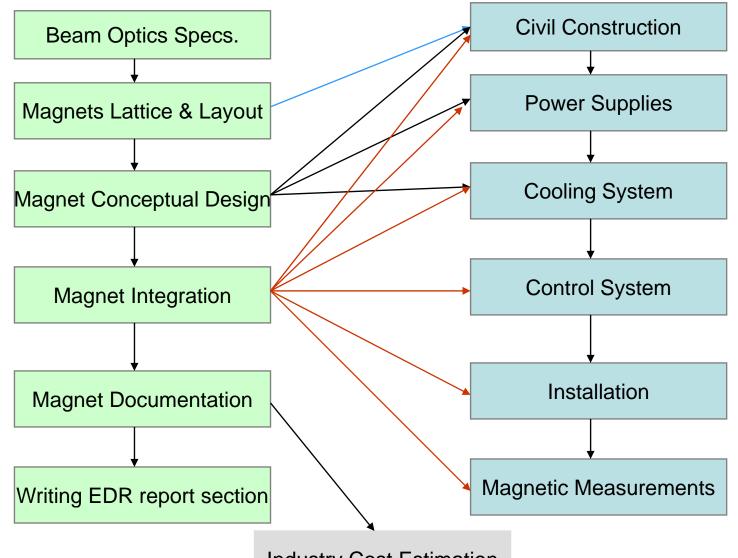
Spin rotator solenoids will be changed to 2.62 m effective length (current value is 4.16 m).

Cryomodule quads will be changed to 0.3 m effective length (current value is 0.666 m effective length).

1. Design each magnet style:

- Magnetic design (2D and if need 3D magnetic field simulations to confirm specified field quality and magnet performance;
- Pole profile and geometry optimization for better integrated field quality;
- Mechanical and thermal analysis;
- Magnet documentation.
- 2. Magnet documentation package should include at least:
- Magnet specification with all needed parameters;
- Results of magnetic field analysis and also mechanical and thermal calculations.
- Magnet drawings with at least cross-sections and views transverse and longitudinal with all connections to the power, water, instrumentation and corresponding schematics;
- Description of all used materials: iron, copper, insulation, probes, cables, etc...
- Description of magnet manufacturing technology: winding coil technique, epoxy impregnation, curing, stamping laminations, yoke and magnet assembly, etc...
- Magnet support structure general views with adjusting mechanisms
- Drawing of magnet mounting in the tunnel.

ILC EDR Magnet Design and Integration Process



- 1. Magnet design should be made by professionals only.
- 2. The time depends on the experience of design engineer and supporting team. Only institutions with accelerator magnet design, building and testing experience should participate in the bid.
- 3. Designers should use the general magnet specification document as guidance for magnet design. This document should describe in general way the magnet technology which must be used.
- 4. The magnet design and integration should include several steps:
 - 1. Magnet conceptual design.
 - 2. Review magnet parameters and integration with power supply, cooling, vacuum, instrumentation, control systems and civil construction.
 - 3. Magnet optimization to optimize performance, cost, technology, mounting, installation, etc.
 - 4. Review of optimized system including matching to other sub-systems.
 - 5. Preparing pre-fabrication drawings and documentation.

EDR Magnet Design Information Flow

ILC

- 1. The design process and information flow, data exchange between different areas, regions, institutions, teams, specialists. We should expect large fraction of time will be waiting additional information, technical decisions, changes in specs, etc...
- 2. Integration with other sub-systems and making technical decisions for all areas simultaneously on the same issue and problem.
- 3. Find professionals for magnet design and integration with needed experience.
- 4. Converting R&D projects into useful results for EDR.
- 5. Wasting large fraction of specialists time for meetings, reports, reviews, travels with corresponding low impact on EDR progress.
- 6. Any change in lattice or general magnet parameters will cause magnet redesign and corresponding design time increase.
- 7. The late start of EDR writing.
- 8. Industry cost estimation for different regions and firm ranks.

RTML – Priorities for Detailed Design

- Priorities for detailed design effort need to be established key magnets: complexity, cost, quantity (and/or all of the above)
 - Detailed design & cost estimate
 - Optimization of parameters, e.g. peak field vs. integral required
 - Conventional vs. superconducting
 - FMEA/Reliability
- Candidates
 - Large solenoids in Spin Rotator section
 - Superconducting devices cost & complexity
 - Individual cryostats significant design task
 - Field uniformity and axis alignment determine detailed requirements
 - SC quadrupoles in rf cryomodules
 - 5-15 GeV beams \Rightarrow decrease in strength (via length change)
 - Transfer line quadrupoles and steering dipoles
 - Large quantities requirements, cost
 - Kickers
 - RTML specific designs

Detailed Design Labor Estimates

- The engineering and designer labor hours for detailed design of magnets has been estimated by the Magnet Systems group
 - Estimates are based on magnet engineering experience
 - Uncertainties include the usual: changes in requirements, programmatic changes, lack of dedicated resources, etc.
 - Units are FTE's

Estimated Magnet Design Effort									
Design	Engr/Phys	Designer							
Moderate Conventional Magnet	0.25	0.65							
Complex Conventional Magnet	0.40	1.20							
Moderate SC Magnet	0.50	1.25							
Complex SC Magnet	1.00	2.20							
Cryostat	0.50	1.50							

• FY08 budgets do not appear to support any significant magnet engineering effort (for detailed design)

Detailed Design ⇒ **Reliability/FMEA**

- Magnet reliability is a major concern
 - MTBT assigned for magnets in the range $10 20 \times 10^6$ hrs
 - Reliability must be 'built in' part of the design process and addressed early in the project
- FMEA Failure Modes and Effect Analysis is a structured, qualitative approach to understanding
 - which components in a system are most likely to fail
 - what the effects of the failure will be
 - the root causes of the failure
 - when in the component's lifetime it fails

(Note: FMEA was developed by the US military in 1960s - US MIL-STD-1629)

- FMEA need to be carried out on specific magnet <u>detailed</u> designs, representative of the magnet spectrum
 - Conventional, H₂0 cooled, medium complexity
 - Superconducting magnet, e.g. quad in cryomodule
 - Conventional, air-cooled, simple design
 - Specialty or critical magnets, e.g. kickers
- This is an important 'up front' engineering task and cannot be left to the end

Detailed Design ⇒ **Integration Issues**

- EDR Magnets 'Interface/Integration' Topics
 - Vacuum chamber (aka 'beam pipe') treatments
 - Magnets must be taken apart (after installation) for insertion of beam pipe
 - Generic or magnet specific tooling will be needed
 - Impact on design, alignment, field quality, etc. must be studied
 - Bake-out questions impact on magnets
 - Power Systems
 - Current, voltage, etc.
 - Review of stringing rules
 - Cable sizing and reliability
 - Coordination with Technical and Global Systems
 - AC Power 'treaties' to be negotiated w/ Conv. Systems Power
 Define 'boundaries', responsibilities, etc.
 - LCW system 'treaties' to be negotiated w/ Conv. Systems LCW
 - Define 'boundaries', requirements, responsibilities, standards, etc.
 - Controls interfaces 'treaties' to be negotiated w/ Controls Group
 - Define 'boundaries', requirements, responsibilities, etc.
 - Installation 'treaties' to be negotiated w/Installation Group
 - Define 'boundaries', responsibilities, etc.
- How does this get done?

EDR – Definition, Schedule, and Resources

- EDR time scale FY07-FY09
 - FY2007 is over (funds are gone; magnet design not begun)
 - FY2008 has very limited resources for "low priority" items like magnets...
 - FY2009 appears to have some additional resources for magnet detailed design (mostly rumor...)
 - The conclusion is that there will not be a significant number of magnet styles with detailed designs by FY2010
 - No ability (or resources) to make a significant improvement in the cost estimate
 - Detailed beam line layouts will not exist
 - No 'reality checks' on completeness, access, interferences, etc
 - Not ready to begin construction
 - Compresses all of detailed design into the 'pre-production' and early project phases
 - Pile-up of work on magnet designers, draftspersons, etc.
 - Potential schedule impact on vendors and machine installation
- Ready for approval process in FY2010 (?)
 - Not a realistic schedule w/res to ~130 magnet designs

RTML – What is Missing Here?

- Kickers and Pulsed Magnets
 - R&D on fast pulsers is centered in DR effort
 - Separate effort for RTML?
 - Not efficient use of scarce resources
 - Some area specific issues need to be resolved
 - Is there a mechanism in the EDR approach to find a solution across Area System boundaries?
- More general concerns across Area Systems
 - Common Design Standards
 - Core steel specifications, solid vs. laminations
 - Conductor Cu standard sizes, length requirements (i.e., no internal joints) I-V tradeoffs
 - LCW pressure drops, flow rates, temperature rise, fittings, hoses, etc.
 - Cost Estimation Standards
 - Measurement & test
 - "Global' Reliability/Maintainability Studies
 - Materials/components
 - Processes
 - Operating regimes & environments

- All RTML magnets are feasible for design and fabrication.
- Total number of magnets 4576.
- Number of magnet styles: Dipoles- 6, Quadrupoles 4 plus 1 superconducting, Correctors – 2 plus 1 superconducting, 1 superconducting solenoid, plus septums, bumps and kickers.
- Time frame for the magnet design depends on many factors (region, firm, institution, salary range, experience, supporting structure, etc.) and better use bidding process to resolve this issue.
- Magnets for R&D and prototyping: 1- conventional dipole, 1- conventional quadrupole, 1- corrector, 1- superconducting quadrupole package including correctors, 1- superconducting solenoid 0.5 m model.
- Goals for R&D: prove chosen magnet technology, reliability, investigate magnetic center stability in quadrupoles at BBA, hysteresis effects in dipoles, prove the chosen magnetic measurement technique. Investigate coupling effects between main magnet and correctors. Investigate the magnets long term behavior.