## FD configuration, especially S-band BPMs

Toshiyuki Okugi (KEK) 3 / 17 / 2008 ATF2 meeting in KNU

### **Introduction - ATF2 Project**



 $\begin{array}{l} \beta_x{}^*= & 4 mm \\ \beta_y{}^*= 0.1 mm \end{array}$ 

-Prototype of ILC Final Focus Optics.

- Initial commissioning will be started from the end of 2008.

Beam Size at IP  $\sigma_x^* = 2.8 \ \mu m$  $\sigma_v^* = 34 \ nm$ 

# **Design Parameters of ATF2**

| Parameters                              | ILC                | FFTB               | ATF- <b>Ⅱ</b>        |
|-----------------------------------------|--------------------|--------------------|----------------------|
| $E_{\rm beam}  [{\rm GeV}]$             | $250 \ / \ 500$    | 46                 | 1.3                  |
| $N_{ m bunch}$                          | $2 \times 10^{10}$ | $5 \times 10^{10}$ | $1 \times 10^{10}$   |
| $\gamma \varepsilon_x \text{ [radm]}$   | $1 \times 10^{-5}$ | $3 \times 10^{-5}$ | $2.5 \times 10^{-6}$ |
| $\gamma \varepsilon_y \; [\text{radm}]$ | $4 \times 10^{-8}$ | $2 \times 10^{-6}$ | $5.0 \times 10^{-8}$ |
| $\beta_x^* [\mathrm{mm}]$               | 21 / 30            | 3.0                | 4.0                  |
| $\beta_y^* \; [\mathrm{mm}]$            | $0.4 \ / \ 0.3$    | 0.1                | 0.1                  |
| $L^*$ [m]                               | 3.5  or  4.3       | 1.5                | 1.0                  |
| $\sigma^*_x \; [\mu { m m}]$            | $0.66 \ / \ 0.55$  | 1                  | 2.8                  |
| $\sigma_y^* \; [\mathrm{nm}]$           | $5.7 \ / \ 3.5$    | 47                 | 34                   |

- -FFTB with global chromaticity correction scheme, was tested in 1993-1997 and achieved the smallest beam size of 55nm.
- ATF2, the ILC BDS test facility with local chromaticity correction method, will be tested from the end of 2008

### Beam Optics for Global Chromaticity Correction (Old Linear Collider Final Focus)



Chromaticity correction was done only by global correction section.

### Beam Optics for Local Chromaticity Correction (Present ILC Final Focus)



Sectupoles are located around the quadrupoles, which generate the large chromaticity.



### **ATF2** Optics

-Prototype of ILC final focus beam line (Local Chromaticity Correction)



### **Alignment and Vibration Tolerance**

#### The tolerance of ATF2 quadrupoles are same order to that of ILC BDS.

Strength of Quadrupoles

Vibration of Quadrupoles



### Final Doublet Table Configuration





#### Large Beam size around "Final Doublet"

 $\sigma_x = 3.6 \mu m$ 

The large beam size make a background to "Shintake Monitor"

# Sextupoles to use SD0 and SF1



Bore diameter: 2.1259" = 54mm

Final Doublet Quadrupoles

Modified the SLAC QC3 magnet to make the large aperture



Shims to make a large aperture

Side-shim to reduce 12-pole



S-band BPM will be used around the Final Doublet and Sextupoles to make a large aperture. We must make the S-band BPM support adopter for SF1 and SD0, because the weight of S-band BPMs are heavy.



This is not the supports for SF1 and SD0

End of presentation

### **ATF2** Optics



### **Extraction Section**

- Renewal of present ATF extraction line to reduce the maximum dispersion
- Dispersion correction
- Extraction kicker jitter correction by double kicker system



### **Beam Diagnostic and Matching Section**

- Emittance measurement with wire scanners
- Coupling correction with skew quadrupoles
- Matching to Final Focus beamline



Small Beam Size was measured with Laser Interferometer (Shintake Monitor)



Since the breamstrulung

### **Beam Size Evaluation by Shintake Monitor**



Emitted photon distribution

$$N_{\gamma} \propto \int_{-\infty}^{\infty} \frac{\exp[-\frac{(y-y_0)^2}{2\sigma_y^2}](1+\cos\theta\cos 2k_y y)dy}{= N_0[1+\cos(2k_y y_0)\cos\theta]\exp[-2(k_y \sigma_y)^2]}$$

$$N_{\pm} = N_0 [1 \pm \cos \theta \exp[-2(k_y \sigma_y)^2]]$$

$$M \equiv \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$
$$= |\cos \theta| \exp[-2(k_{y}\sigma_{y})^{2}]$$
$$= |\cos \theta| \exp[-2(\frac{\pi\sigma_{y}}{d})^{2}]$$

$$\sigma_y = rac{d}{2\pi} \sqrt{2 \ln \left( rac{|\cos heta|}{\underline{M}} 
ight)}$$

Amount of interference

# Layout of the Laser Table



# Measurable Range of Laser Interferometer



By changing 4 laser collision angle, we can measure 25 – 6000 nm of beam size.