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Abstract

These proceedings present the lectures given at the twenty-first specialized course organized by the
CERN Accelerator School (CAS), the topic being Digital Signal Processing. The course was held in
Sigtuna, Sweden, from 31 May–9 June 2007. This is the first time this topic has been selected for a spe-
cialized course. Taking into account the number of related applications currently in use in accelerators
around the world, it was recognized that such a topic should definitively be incorporated into the CAS
series of specialized courses. The specific aim of the course was to introduce the participants to the use
and programming of Digital Signal Processors (DSPs) and Field Programmable Gate Arrays (FPGAs)
evaluation boards. The course consisted of lectures in the mornings covering fundamental background
knowledge in mathematics, controls theory, design tools, programming hardware platforms, and imple-
mentation details. In the afternoons the students split into two groups with people working in pairs. One
group worked on problem solving using a PC-based workstation connected to a DSP evaluation board
while the second group performed the same exercise on PCs connected to a FPGA evaluation board.
Half-way through the school, those working on DSPs moved to FPGAs and vice versa. The problems
to be solved were of increasing difficulty and all of them were directly related to real and practical
realizations currently in use in the accelerator field.
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Foreword

The aim of the CERN Accelerator School (CAS) to collect, preserve and disseminate the knowl-
edge accumulated in the world’s accelerator laboratories applies not only to general accelerator physics,
but also to related sub-systems, equipment, and technologies. This wider aim is achieved by means of
specialized courses. For 2007, the topic of the course was Digital Signal Processing (DSP) and was held
at the SigtunahÃűjden Hotel, Sigtuna, Sweden, from 31 May–9 June 2007. The course was organized in
collaboration with the Uppsala University, Sweden.

This was the first time Digital Signal Processing was used as a topic for a CAS specialized course.
However, when considering the number of related applications currently in use in the field of accelerators,
it was felt that it was the right time to address this specific topic. The organization of such a course was
a real challenge in itself, since it implied finding and transporting computers to Sweden, negotiating the
availability of software licences for the duration of the course, negotiating the acquisition of DSP and
FPGA evaluation boards, and preparing 50 computers to be compatible with the proposed exercises. It is
a pleasure to express my thanks to CERN, the companies Synplicity, Mathworks and Xilinx, as well as
the Texas Instruments Worldwide University Program, and the Xilinx University Program for their kind
support, without which the course would not have been made possible.

To ensure that the required material was made available was certainly a mandatory pre-requisite,
but the elaboration of the course and, in particular, the hands-on courses in the afternoon sessions were
no less challenging. I would particularly like to acknowledge the outstanding contribution of our CERN
colleagues Hermann Schmickler, Maria-Elena Angoletta and Javier Serrano for their contacts with the
relevant industry and the high-quality afternoon courses they prepared and supervised, John Evans for
his hard work in obtaining the software licences and Edwige Bournonville for the perfect preparation
of the computers as well as their maintenance during the course. Similarly, I would like to thank Leif
Gustafsson and Pawel Marciniewski (Uppsala University) for their highly appreciated contribution as
tutors during the afternoon courses.

It is also important to thank the Local Organizing Committee (Professor Tord Ekelof, Dr. Volker
Ziemann and Ms. Inger Ericson) for obtaining financial support from the Swedish Research Council
(Vetenskapsraadet) to help CAS with the organization of the course.

As always, the backing of the CERN management, the guidance of the CAS Advisory and Pro-
gramme Committees, the attention to detail of the Local Organizing Committee and the management and
staff of the SigtunahÃűjden Hotel ensured that the school was held under optimum conditions.

Very special thanks must go to the lecturers for the enormous task of preparing, presenting, and
writing up their topics.

Finally, the enthusiasm of the participants who came from more than 23 different countries around
the world was convincing proof of the usefulness and success of the course.

It is my pleasure and privilege to thank most sincerely all those persons who helped me to make the
course a success, including Barbara Strasser, Suzanne von Wartburg, and the team of the CERN Scientific
Text Processing Service for their dedication and commitment to the production of this document.

Daniel Brandt
CERN Accelerator School
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Control theory

S. Simrock
DESY, Hamburg, Germany

Abstract
In engineering and mathematics, control theory deals with the behaviour of
dynamical systems. The desired output of a system is called the reference.
When one or more output variables of a system need to follow a certain ref-
erence over time, a controller manipulates the inputs to a system to obtain the
desired effect on the output of the system. Rapid advances in digital system
technology have radically altered the control design options. It has become
routinely practicable to design very complicated digital controllers and to carry
out the extensive calculations required for their design. These advances in im-
plementation and design capability can be obtained at low cost because of the
widespread availability of inexpensive and powerful digital processing plat-
forms and high-speed analog IO devices.

1 Introduction
The emphasis of this tutorial on control theory is on the design of digital controls to achieve good dy-
namic response and small errors while using signals that are sampled in time and quantized in amplitude.
Both transform (classical control) and state-space (modern control) methods are described and applied
to illustrative examples. The transform methods emphasized are the root-locus method of Evans and fre-
quency response. The state-space methods developed are the technique of pole assignment augmented
by an estimator (observer) and optimal quadratic-loss control. The optimal control problems use the
steady-state constant gain solution.

Other topics covered are system identification and non-linear control. System identification is a
general term to describe mathematical tools and algorithms that build dynamical models from measured
data. A dynamical model in this context is a mathematical description of the dynamic behaviour of a
system or process.

Non-linear control is a sub-division of control engineering which deals with the control of non-
linear systems. The behaviour of a non-linear system cannot be described as a linear function of the
state of that system or the input variables to that system. There exist several well-developed techniques
for analysing non-linear feedback systems. Control design techniques for non-linear systems also exist.
These can be subdivided into techniques which attempt to treat the system as a linear system in a limited
range of operation and use (well-known) linear design techniques for each region.

The main components of a control system (Fig. 1) are the plant and a sensor which is used to
measure the variable to be controlled. The closed-loop system (Fig. 2) requires a connection from the
system outputs to the inputs. For feedback control a compensator amplifies and filters the error signal
(Fig. 3) to manipulate the input signals to the plant to minimize the errors of the variables.

Objective: Control theory is concerned with the analysis and design of a closed-loop control
system.

Analysis: Closed-loop system is given to determine characteristic or behaviour.
Design: Desired system characteristics or behaviour are specified → configure or synthesize a

closed-loop system.
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Fig. 1: Components of a control system

Definition: A closed-loop system is a system in which certain forces (we call these inputs) are deter-
mined, at least in part, by certain responses of the system (we call these outputs).

Fig. 2: Schematic of a closed-loop system

Definitions:

– The system for measurement of a variable (or signal) is called a sensor
– A plant of a control system is the part of the system to be controlled
– The compensator (or controller or simply filter) provides satisfactory characteristics for the total

system.

Fig. 3: Arrangement of controller and plant in a closed-loop system

Two types of control system:

– A regulator maintains a physical variable at some constant value in the presence of perturbances.
– A servo mechanism describes a control system in which a physical variable is required to follow

or track some desired time function (originally applied in order to control a mechanical position
or motion).

S. SIMROCK
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2 Examples of control systems
In the following we study two examples where feedback control is applied. The first example shows how
to model an RF control system. The second and third examples show electronic circuits which can be
used to design the compensator (or controller) filter.

2.1 RF control system
RF control systems are used to stabilize amplitude and phase of the accelerating fields. Amplitude and
phase are measured, compared with the desired setpoints, and the amplified error signals drive actuators
for amplitude and phase thereby forming a negative feedback loop.
Goal:
Maintain stable gradient and phase in presence of field perturbations.
Solution: Feedback for gradient amplitude and phase.

Fig. 4: RF control system with feedback control for amplitude and phase

Model: Mathematical description of input–output relation of components combined with block
diagram.

Amplitude loop (general form):

Fig. 5: General form feedback loop for amplitude control with blocks for the system components

RF control model using ‘transfer functions’
A transfer function of a linear system is defined as the ratio of the Laplace transform of the output

and the Laplace transform of the input with ICs = zero.

CONTROL THEORY
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Fig. 6: Description of system components in the amplitude control loop by transfer functions

Input–output relations

Input Output Transfer function

U(s) Y (s) G(s) = P (s)K(s)
E(s) Y (s) L(s) = G(s)Hc(s)
R(s) Y (s) T (s) = (1 + L(S)M(s))−1L(s)

2.2 Passive network circuit
For high frequencies the network shown in (Fig. 7) forms a voltage divider determined by the ratio of
the resistors, while at low frequencies the input voltage is unchanged at the output.

Fig. 7: Passive network for a frequency-dependent voltage divider

Differential equations:

R1i(t) +R2i(t) + 1
C

∫ t
0 i(τ)dτ = v1(t)

R2i(t) + 1
C

∫ t
0 i(τ)dτ = v2(t)

Laplace transform:

R1I(s) +R2I(s) + 1
sC I(s) = V1(s)

R2I(s) + 1
s.C I(s) = V2(s)

Laplace transform:

G(s) = V2(s)
V1(s) = R2Cs+1

(R1+R2)Cs+1

Input V1, Output V2 .

S. SIMROCK
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2.3 Operational amplifier circuit
The transfer function of the circuit shown in (Fig. 8) represents an amplifier with very high gain at low
frequencies and a gain determined by the ratio of the resistors at high frequencies. The more general case
is shown in (Fig. 9) and allows the realization of a wide range of transfer functions.

Fig. 8: Active circuit with operational amplifier

Vi(s) = R1I1(s) and Vo(s) = −(R2 + 1
sC )I1(s)

G(s) = V0(s)
Vi(s)

= −R2Cs+1
R1Cs

Fig. 9: Generalized version of active circuit with operational amplifier using impedances in the input and feedback
section

It is convenient to derive a transfer function for a circuit with a single operational amplifier that
contains input and feedback impedance:

Vi(s) = Zi(s)I(s) and V0(s) = −Zf (s)I(s)→ G(s) = V0(s)
Vi(s)

= −Zf (s)
Zi(s)

3 Model of dynamic systems
Models of dynamic systems can be described by differential equations. A system of order n can be
reduced to a set of n first-order equations. These can be written in a matrix formalism called state-space
representation.

We shall study the following dynamic system:
Parameters: k: spring constant, γ: damping constant, u(t): force
Quantity of interest: y(t): displacement from equilibrium

Differential equation: Newton’s third law (m = 1)

ÿ(t) =
∑
Fext = −ky(t)− γẏ(t) + u(t)

CONTROL THEORY
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Fig. 10: Harmonic oscillator with mass m, spring constant k, and damping term γ

ẏ + γẏ(t) + ky(t) = u(t)

y(0) = y0, ẏ(0) = ẏ0

1. Equation is linear (i.e., no y2 like terms).
2. Ordinary (as opposed to partial e.g., ∂

∂x
∂
∂tf(x, t) = 0).

3. All coefficients constant: k(t) = k, γ(t) = γ for all t.

Stop calculating, let us paint. Picture to visualize differential equation.

1. Express highest-order term (put it to one side)

ÿ(t) = −ky(t)− γẏ(t) + u(t)

2. Put adder in front.

Fig. 11: Visualization of the differential equation for the harmonics oscillator

3. Synthesize all other terms using integrators.

3.1 Linear Ordinary Differential Equation (LODE)
General form of LODE:

y(n)(t) + an−1y
(n−1)(t) + ....+ a1ẏ(t) + a0y(t) = bmu

(m)(t) + ....+ b1u̇(t) + b0u(t)
m,n positive integers, m ≤ n; coefficients a0, a1, ..., an−1, b0, ...bm real numbers.

Mathematical solution: I hope you know it

Solution of LODE: y(t) = yh(t) + yp(t) .
The solution is the sum of the homogeneous solution yh(t) (natural response) solving

S. SIMROCK
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Fig. 12: Visualization of the second-order equation for the simple harmonic oscillator. The diagram can be used
to program an analog computer.

y(n)(t) + an−1y
(n−1)(t) + ...+ a1ẏ(t) + a0y(t) = 0

and the particular solution yp(t).

How to get natural response yh(t)? Characteristic polynomial

x(λ) = λn + an−1λn−1 + a1λ+ a0 = 0

(λ− λ1)r.(λ− λr+1...(λ − λn) = 0

yh(t) = (c1 + c2t+ ...+ crt
r−1)eλ1t + cr+1e

λr+1t...+ cne
λnt

The determination of yp(t) is relatively simple, if the input u(t) yields only a finite number of inde-
pendent derivates, e.g., u(t) ∼= exit, βrt

r.

Most important for control system/feedback design:
y(n−1)(t) + an−1y

(n−1)(t) + ...+ a1ẏ(t) + a0y(t) = bmu
(m)(t) + ...+ b1u̇(t) + b0u(t) .

In general: Any linear time-invariant system described by a LODE can be realized, simulated, and easily
visualized in a block diagram (n = 2,m = 2)

Fig. 13: Control-canonical form of a second-order differential equation

It is very useful to visualize interaction between the variables.
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What are x1 and x2?

More explanations later, for now: Please simply accept it.

3.2 State-space equation
Any system which can be represented by a LODE can be represented in state space form (matrix differ-
ential equation).

Let us go back to our first example (Newton’s law):

ÿ(t) + γẏ(t) + ky(t) = u(t)

Step 1: Deduce set of first-order differential equation in variables

xj(t) (so-called states of system)

x1(t) ∼= Position : y(t)

x2(t) ∼= V elocity : ẏ(t) :

ẋ1(t) = ẏ(t) = x2(t)

ẋ2(t) = ÿ(t) = −ky(t)− γẏ(t) + u(t) = −kx1(t)− γx2(t) + u(t)

One LODE of order n transformed into n LODEs of order 1

Step 2: Put everything together in a matrix differential equation:[
ẋ1(t)
ẋ2(t)

]
=
[

0 1
−k −γ

] [
x1(t)
x2(t)

]
+
[

0
1

]
u(t)

ẋ(t) = Ax(t) +Bu(t) State equation

y(t) =
[

1 0
] [ x1(t)

x2(t)

]
y(t) = Cx(t) +Du(t) Measurement equation

Definition: The system state x of a system at any time t0 is the ‘amount of information’ that, together
with all inputs for t ≥ t0, uniquely determines the behaviour of the system for all t ≥ t0.

The linear time-invariant (LTI) analog system is described by the standard form of the state-space equa-
tion ẋ(t) = Ax(t) +Bu(t) state equation

y(t) = Cx(t) +Du(t) state equation,

where ẋ(t) is the time derivative of the vector x(t) =

 x1(t)
...

x2(t)

 .

The system is completely described by the state-space matrices A,B,C,D (in most cases D = 0).
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Declaration of variables

Variable Dimension Name
X(t) nx1 State vector
A nXn System matrix
B nXr Input matrix
u(t) rX1 Input vector
y(t) pX1 Output vector
C pXn Output matrix
D pXr Matrix representing direct coupling between input and output

Why all this work with state-space equation? Why bother with it?

Because, given any system of the LODE form

y(n)(t) + an−1y
(n−1)(t) + ...+ a1ẏ(T ) + a0y(t) = bmu

(m)(t) + ...+ b1u̇(t) + b0u(t)

the system can be represented as

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

With, for example, control-canonical form (case n = 3, m = 3):

A =

 0 1 0
0 0 1
−a0 −a1 −a2

 , B =

 0
0
1

 , C =
[
b0 b1 b2

]
, D = b3

or observer-canonical form:

A =

 0 0 −a0

1 0 −a1

0 1 −a2

 , B =

 b0
b1
b2

 , C =
[

0 0 1
]
, D = b3

1. Notation is very compact, but not unique.
2. Computers love the state-space equation. (Trust us!)
3. Modern control (1960−now) uses the state-space equation
4. General (vector) block diagram for easy visualization

3.2.1 Block diagrams:

Now: solution of the state-space equation in the time domain:

x(t) = φ(t)x(0) +
∫ t

0 φ(τ)Bu(t− τ)dτ .

Natural response + particular solution

y(t) = Cx(t) +Du(t)
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Fig. 14: Control-canonical form of a differential equation of second order

Fig. 15: Observer-canonical form of a differential equation of second order

= Cφ(t)x(0) + C
∫ t

0 φ(τ)Bu(t− τ)dτ +Du(t) .

With the state transition matrix

φ(t) = I +At+ A2

2! t
2 + A3

3! t
3 + ... = eAt ,

which is an exponential series in the matrix A (time evaluation operator).
Properties of φ(t) (state transition matrix):

1. dφ(t)
dt = Aφ(t)

2. φ(0) = I

3. φ(t1 + t2) = φ(t1).φ(t2)
4. φ−1 = φ(−t)

Example:

A =
[

0 1
0 0

]
=⇒ A2 =

[
0 0
0 0

]
, φ(t) = I +At =

[
1 t
0 1

]
= eAt

Matrix A is a nilpotent matrix.

3.2.2 Example
We have the following differential equation:

d2

dt2 y(t) + 4 d
dty(t) + 3u(t) = 2u(t) .
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1. State equations of the differential equation:

Let x1(t) = y(t) and x2(t) = ẏ(t) then

ẋ1(t) = ẏ(t) = x2(t)

ẋ2(t) + 4x2(t) + 3x1(t) = 2u(t)

ẋ2 = −3x1(t)− 4x2(t) + 2u(t)

2. Write the state equations in matrix form:

Define system state x(t) =
[
x1(t)
x2(t)

]
ẋ(t) =

[
0 1
−3 −4

]
x(t) +

[
0
2

]
u(t)

y(t) =
[

1 0
]
x(t) .

3.2.3 Cavity model

Fig. 16:

C.Ü + 1
RL
.U̇ + 1

L .U = İ ′g + İb

ω 1
2

:= 1
2RLC

= ω0
2QL

Ü + 2ω 1
2
.U̇ + ω2

0.U = 2RLω 1
2
.( 2
m İg + İb)

Only the envelope of RF (real and imaginary part) is of interest:

U(t) = (Ur(t) + iUi(t)).exp(iωHF (t)

Ig(t) = (Igr(t) + iIgi(t)).exp(iωHF (t))

Ib(t) = (Ibωr(t) + iIbωi(t)).exp(iωHF t) = 2(Ibor(t) + iIboi(t)).exp(iωHF t)
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Neglect small terms in derivatives for U and I .

Ür + iÜi(t) << ω2
HF (Ur(t) + iUi(t))

2ω 1
2
(U̇r + iU̇r(t)) << ω2

HF (Ur(t) + iUi(t))∫ t2
t1

(İr(t) + iİi(t))dt <<
∫ t2
t1
ωHF (Ir(t) + iIi(t))dt

Envelope equations for real and imaginary component.

U̇r(t) + ω 1
2
.Ur + ∆ω.Ui = ωHF

r
Q .(

1
mIgr + Ibor)

U̇i(t) + ω 1
2
.Ui −∆ω.Ur = ωHF ( rQ).( 1

mIgi + Iboi)

Matrix equations:[
U̇r(t)
U̇i(t)

]
=

[
−ω 1

2
−∆ω

∆ω −ω 1
2

]
.

[
Ur(t)
Ui(t)

]
+ ωHF ( rQ).

[
1 0
0 1

]
.

[
1
mIgr(t) + Ibor(t)
1
mIgi(t) + Iboi(t)

]

With system Matrices: A =

[
−ω 1

2
−∆ω

∆ω −ω 1
2

]
B = ωHF ( rQ).

[
1 0
0 1

]

−→x (t) =
[
Ur(t)
Ui(t)

]
−→u (t) =

[
1
mIgr(t) + Ibor(t)
1
mIgi(t) + Iboi(t)

]

General form: −̇→x = A.~x(t) +B.−→u (t).

Solution:

−→x (t) = φ(t).−→x (0) +
∫ t

0 φ(t− t′).B.−→u (t
′
)dt
′

φ(t) = e
−ω 1

2 t

[
cos(∆ωt) −sin(∆ωt)
sin(∆ωt) cos(∆ωt)

]
Special case:

−→u (t) =
[

1
mIgr(t) + Ibor(t)
1
mIgi(t) + Iboi(t)

]
=:
[
Ir
Ii

]
[
Ur(t)
Ui(t)

]
=

ωHF ( r
Q

)

ω2
1
2

+∆ω2 .

[
ω 1

2
−∆ω

∆ω ω 1
2

]
.{1 −

[
cos(∆ωt) −sin(∆ωt)
sin(∆ωt) cos(∆ωt)

]
e
−ω 1

2
t}.
[
Ir
Ii

]

3.3 Mason’s rule
Mason’s rule is a simple formula for reducing block diagrams. It works for continuous and discrete sys-
tems. In its most general form it is messy, except for the special case when all paths touch:

H(s) = Σ(forward path gains)
1−Σ(loop path gains)
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Fig. 17: Simulink diagram of the harmonic oscillator as analog computer and in state-space form. The state-space
form of the cavity model follows the same structure.

Fig. 18: Simulink diagram of the cavity model with two inputs and output for real and imaginary parts of the drive
and field vectors

Two paths are said to touch if they have a component in common, e.g., an adder.
Forward path: F1:1− 10 − 11 − 5− 6 and F2:1− 2− 3− 4− 5− 6

Loop path: I1:3− 4− 5− 8− 9 and I2:5− 6− 7

G(f1) = H5H3, G(f2) = H1H2H3, G(I1) = H2H4, G(I2) = H3

Check: All paths touch (contain adder between 4 and 5)

=⇒ By Mason’s rule: H = G(f1)+G(f2)
1−G(l1)−G(l2) = H5H3+H1H2H3

1−H2H4−H3
= H3(H5+H1H2)

1−H2H4−H3
.
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Fig. 19: Example for Mason’s rule. All connections in the forward and loop paths are shown.

4 Transfer function G(s)

The transfer function is commonly used in the analysis of single-input single-output electronic filters, for
instance. It is mainly used in signal processing, communication theory, and control theory. The term is
often used exclusively to refer to linear, time-invariant systems (LTI), as covered in this article. Most real
systems have non-linear input/output characteristics, but many systems, when operated within nominal
parameters (not ‘over-driven’) have behaviour that is close enough to linear that LTI system theory is an
acceptable representation of the input/output behaviour.

Continuous-time space model:

ẋ(t) = Ax(t) +Bu(t) State equation

y(t) = Cx(t) +Du(t) Measurement equation

The transfer function describes the input–output relation of the system.

Fig. 20: System with the Laplace transforms of input and output signals. The ratio is the transfer function.

sX(s)− x(0) = AX(s) +BU(s)

X(s) = (sI −A)−1x(0) + (sI −A)−1BU(s)

= φ(s)x(0) + φ(s)BU(s)

Y (s) = CX(s) +DU(s)

= C[(sI −A)−1]x(0) + [c(sI −A)−1B +D]U(s)

= Cφ(s)x(0) + Cφ(s)BU(s) +DU(s)

Transfer function G(s) (pxr) (case:X(0) = 0):

G(s) = C(sI −A)−1B +D = Cφ(s)B +D

Transfer function of TESLA cavity including 8
9 − π mode
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Hcont(s) ≈ Hcav(s) = HΠ(s) +H 8π
9

(s)

π− mode HΠ(s) =
(ω 1

2
)π

∆ω2
π+(s+(ω 1

2
)π)2

[
s+ (ω 1

2
)π −∆ωπ

−∆ωπ s+ (ω 1
2
)π

]
8
9π− mode H 8π

9
(s) = −

(ω 1
2

) 8π
9

∆ω2
8π
9

+(s+(ω 1
2

) 8π
9

)2

[
s+ (ω 1

2
)8π

9 −∆ω 8π
9

∆ω 8π
9

s+ (ω 1
2
) 8π

9

]

4.1 Transfer function of a closed-loop system

Fig. 21: Diagram of a closed-loop system. Mason’s rule can be applied to determine the closed-loop transfer
function.

We can deduce for the output of the system:

Y (s) = G(s)U(s) = G(s)Hc(s)E(s)

= G(s)Hc(s)[R(s)−M(s)Y (s)

= L(s)R(s)− L(s)M(s)Y (s)

With L(s) the transfer function of the open-loop system (controller and plant)

(1 + L(s)M(s))Y (s) = L(s)R(s)

Y (s) = (I + L(s)M(s))−1L(s)R(s) = T (S)R(s),

where T (s) is called the reference transfer function.

4.2 Sensitivity
The ratio of change of the transfer function T (s) by the parameter b can be defined as

System characteristics change with system parameter variations S = ∆T (s)
T (s) .

b
∆b .

The sensitivity function is defined as: STb = lim∆b−→0
∆T (s)

∆b . b
T (s) = T (s)

b . b
T (s) .

Or, in general, sensitivity function of a characteristic W with respect to the parameter b:

SWb = W
b .

b
W .

Example: Plant with proportional feedback given by Gc(s) = Kp and Gp(s) = K
s+0.1
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Fig. 22: Sensitivity as function of frequency for different feedback gains

Plant transfer function T (s): T (s) KpGp(s)
1+KpGp(s)Hk

STH(jω) = −KpGp(jω)Hk
1+KpGp(jω)Hk

= −0.25Kp
0.1+0.25Kp+jω

Increase of H results in decrease of T . System cannot be insensitive to both H,T .

4.3 Disturbance rejection
Disturbances are system influences we do not control and whose impact on the system we want to mini-
mize.

C(s) = Gc(s).Gp(s)
1+Gc(s).Gp(s).H(s) .R(s) + Gd(s)

1+Gc(s).Gp(s).H(s)

= T (s).R(s).+ Td(s).D(s).

To reject disturbances, make T.d(s).D(s) small!

1. Use frequency response approach to investigate disturbance rejection.
2. In general Td(jω) cannot be small for all −ω. Design Td(jω) small for significant portion of

system bandwidth.
3. Reduce the gain Gd(jω) between disturbance input and output.
4. Increase the loop gain GcGp(jω) without increasing the gain Gd(jω). Usually accomplished by

the choice of Gc(jω) compensator.

Fig. 23: Diagram with all transfer functions and signals used to define the disturbance rejection

5. Reduce the disturbance magnitude d(t): should always be attempted if reasonable.
6. Use feed forward compensation, if disturbance can be measured.
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5 Stability
In electrical engineering, specifically signal processing and control theory, BIBO stability is a form of
stability for signals and systems. BIBO stands for Bounded-Input Bounded-Output. If a system is BIBO
stable then the output will be bounded for every input to the system that is bounded.

Now we have learnt so far that
the impulse response tells us everything about the system response to arbitrary input signal u(t).

What we have not learnt:
If we know the transfer function G(s), how can we deduce the system behaviour?

What can we say about the system stability?

Definition: A linear time invariant system is BIBO stable (Bounded-Input-Bounded-Output) for all
bounded inputs |u(t)| ≤ M1 (for all t) exists a boundary for the output signal M2, so that |y(t)| ≤ M2

(for all t) with M1 and |M2| are positive real numbers.

If input never exceeds M1 and output never exceeds M2 then we have BIBO stability!

Note: It has to be valid for ALL bounded input signals!

Example: Y (s) = G(s)U(s), integrator G(s) = 1
s

1. Case u(t) = δ(t), U(s) = 1

|y(t)| = |L−1[Y (s)]| = |L−1[1
s ]| = 1

2. Case u(t) = 1, U(s) = 1
s

|y(t)| = |L−1[Y (s)]| = |L−1[ 1
s2

]| = t

BIBO stability has to be proven for any input. It is not sufficient to show its validity for a single
input signal!

Condition for BIBO stability:

We start from the input–output relation

Y (s) = G(s)U(s).

By means of the convolution theorem we get

|y(t)| = | ∫ t0 g(τ)u(t − τ)dτ | ≤ ∫ t0 |g(τ)||u(t − τ)|dτ ≤M1

∫∞
0 |g(τ)|dτ ≤M2.

Therefore it follows immediately that if the impulse response is absolutely integrable∫∞
0 |g(t)|dt <∞,

then the system is BIBO stable.
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5.1 Poles and zeros

Can stability be determined if we know the TF of a system?

G(s) = Cφ(s)B +D = C
[sI−A]adj
χ(s) B +D

Coefficients of transfer function G(s) are rational functions in the complex variable s

gij(s) = a.
Πmk=1(s−zk)

πnl=1(s−pl) = Nij(s)
Dij(s)

zk zeros, pl poles, α real constant, and it is m ≤ n (we assume common factors have already been
cancelled!).

What do we know about the zeros and the poles?

Since numerator N(s) and denominator D(s) are polynomials with real coefficients, poles and zeros
must be real numbers or must arise as complex conjugated pairs!

5.2 Stability directly from state-space
Recall that: H(s) = C(sI −A)−1B +D.

Assuming D = 0 (D could change zeros but not poles),

H(s) = Cadj(sI−A)B
det(sI−A) = b(s)

a(s) .

Assuming there are no common factors between the poly Cadj(sI − A)B and det(sI − A) i.e., no
pole-zero cancellations (usually true, system called ‘minimal’) then we can identify
and

b(s) = Cadj(sI −A)B

a(s) = det(sI −A)

i.e., poles are root of det(sI −A).

Let λi be the i-th eigen value of A if Re(λi) ≤ 0 for all i =⇒ system stable.

So with a computer, with eigenvalue solver, one can determine system stability directly from coupling
Matrix A.
A system is BIBO stable if, for every bounded input, the output remains bounded with increasing time.

For a LTI system, this definition requires that all poles of the closed-loop transfer-function (all roots
of the system characteristic equation) lie in the left half of the complex plane.

5.3 Several methods are available for stability analysis:
1. Routh Hurwitz criterion
2. Calculation of exact locations of roots
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– root locus technique
– Nyquist criterion
– Bode plot

3. Simulation (only general procedures for nonlinear systems)

While the first criterion proofs whether a feedback system is stable or unstable, the second method also
provides information about the setting time (damping term). Pole locations tell us about impulse re-

sponse i.e., also stability:

Fig. 24: Stability diagram in the complex plane. The system is stable if the poles are located in the left half of the
plane. Oscillations occur for conjugate complex poles.

Furthermore: Keep in mind the following picture and facts!

1. Complex pole pair: Oscillation with growth to decay
2. Real pole: exponential growth or decay
3. Poles are the eigenvalues of the matrix A.
4. Position of zeros goes into the size of cj ....

In general a complex root must have a corresponding conjugate root (N(s), D(s)) polynomials with real
coefficients.
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Bode Diagram

Fig. 25: Bode diagram showing phase and gain margins for stable systems

The closed loop is stable if the phase of the unity crossover frequency of the open loop is larger than
−180 degrees.

5.4 Root locus analysis
Definition: A root locus of a system is a plot of the roots of the system characteristic equation (the poles
of the closed-loop transfer function) while some parameter of the system (usually the feedback gain) is
varied. KH(s) = K

(s−p1)(s−p2)(s−p3) .

Fig. 26: Concept of root locus method

Fig. 27: Transfer function model of the closed-loop system used for the root locus method
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Gcl(s) = KH(s)
1+KH(s) roots at 1 +KH(s) = 0.

How do we move the poles by varying the constant gain K?

Fig. 28: Root locus curves: some typical transfer functions

Fig. 29: More root locus curves: some typical transfer functions

6 Feedback
Feedback is both a mechanism, process, and signal that is looped back to control a system within itself.
This loop is called the feedback loop. A control system usually has input and output to the system; when
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the output of the system is fed back into the system as part of its input, it is called the ‘feedback’.
Feedback and regulation are self-related. The negative feedback helps to maintain stability in a system
in spite of external changes.

The idea:
Suppose we have a system or ‘plant’

Fig. 30: Plant with input and output signals. Open-loop diagram.

We want to improve some aspect of the plant’s performance by observing the output and applying an
appropriate ‘correction’ signal. This is done by the feedback.

Fig. 31: Closed-loop system with reference input and plant output

Question: What should this be?

Open-loop gain: GO.L(s) = G(s) = (uy )−1

Fig. 32: Transfer functions and signals in the open-loop system

Closed-loop gain: GC.L(s) = G(s)
1+G(s)H(s)

Fig. 33: Transfer functions and signals in the closed-loop system

Proof: y = G(u− ufb) = Gu−Gufb =⇒ y +GHy = Gu
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= Gu−GHy =⇒ y
u = G

(1+GH) .

6.1 Simple harmonic oscillator
Consider a simple harmonic oscillator with feedback proportional to x i.e.:

where

ẍ+ γẋ+ ω2
nx = u+ ufb

ufb(t) = −αx(t).

Fig. 34: Simple harmonic oscillator with proportional feedback

Then

ẍ+ γẋ+ ω2
nx = u− αx

=⇒ ẍ+ γẋ+ (ω2
n + α)x = u.

Same as before, except that ‘natural’ frequency ω2
n + α

now the closed-loop transfer function is GC.L.(s) = 1
s2+γs+(ω2

n+α)
.

So the effect of the proportional feedback in this case is to increase the bandwidth of the system (and
reduce gain slightly, but this can easily be compensated for by adding a constant gain in front).

6.1.1 Simple harmonic oscillator with integral feedback
Suppose we use integral feedback in a simple harmonic oscillator

ufb(t) = −α ∫ t0 x(τ)dτ

i.e. ẍ+ γẋ+ ω2
nx = u− α ∫ t0 x(τ)dτ

Differentiating once more yields ...
x + γẍ+ ω2

nẋ+ αx = u̇.

No longer just simple SHO add another state GC.L.(s) =
1

s2+γs+ω2
n

1+(α
s

)( 1

s2+γs+(ω2
n+α)

)
= s

s(s2+γs+ω2
n)+α
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Fig. 35: Bode plot of SHO with proportional feedback. Open and closed-loop transfer function are shown.

Fig. 36: Simple harmonic oscillator with integral feedback

Fig. 37: Bode plot of SHO with integral feedback. Open and closed-loop transfer function are shown.

Observe that

1. GC.L(0 = 0).
2. For large s (and hence for large ω)
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GC.L(s) ≈ 1
(s2+γs+ω2

n
≈ GO.L.(s).

So integral feedback has killed the DC gain i.e., the system rejects constant disturbances.

6.1.2 Simple harmonic oscillator with differential feedback
Suppose we now apply differential feedback in a simple harmonic oscillator i.e.

ufb(t) = −αẋ(t)

Fig. 38: Simple harmonic oscillator with differential feedback

Now we have ẍ+ (γ + α)ẋ+ ω2
nx = u.

So the effect of differential feedback is to increase damping.

Now GC.L(s) = 1
s2+(γ+α)s+ω2

n
.

Fig. 39: Bode plot of SHO with differential feedback. Open and closed-loop transfer function are shown.

So the effect of differential feedback here is to ‘flatten the resonance’ i.e. damping is increased.

Note: Differentiators can never be built exactly, only approximately.
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6.2 PID controller
1. The last three examples of feedback can all be combined to form a PID controller (proportional-

integral-differential). ufb = up + ud + ul

Fig. 40: SHO with PID controller

2. In the example above SHO was a very simple system and it was clear what the physical interpre-
tation of P. or I. or D. did. But for large complex systems it is not obvious.

=⇒ x Require arbitrary ‘tweaking’

That is what we are trying to avoid.

For example, if you are so clever let us see you do this with your PID controller:

Fig. 41: PID controller adjustment problem

Damp this mode, but leave the other two modes undamped, just as they are.

This could turn out to be a tweaking nightmare. It will get you nowhere fast!

We shall see how this problem can be solved easily.

6.3 Full state feedback
Suppose we have a system ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t).

Since the state vector x(t) contains all current information about the system the most general feedback
makes use of all the state information.

u−−K1x1 − ...−Knxn = −Kx

where k = [k1.....kn] (Row matrix)
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Where example: In SHO examples

Proportional feedback: up = −kpx = − [ Kp 0
]

Differential feedback: uD = −kDẋ = − [ 0 kD
]

Theorem:

If there are no pole cancellations in GO.L(s) = b(s)
a(s) = C(sI −A)−1B,

then we can move the eigen values of A−BK anywhere we want using full state feedback.

Proof: Given any system as L.O.D.E or state space it can be written as
x1

...

...
xn

 =


0 1 ... 0
0 ... ... ...
0 ... ... 1
−a0 ... ... −an−1



x1

...

...
xn

+


0
0
..
1

u

y =
[
b0 ... ... bn−1

] 
x1

...

...
xn


where GO.L. = C(sI −A)−1B = bn−1sn−1+...+b0

sn+an−1sn−1+...+a0
i.e. the first row of AO.L gives the coefficients of

the denominator

aO.L(s) = det(sI −AO.L.) = sn + an−1s
n−1 + ...+ a0.

Now AC.L. = AO.L. −BK =


0 1 ... 0
0 ... ... 1
0 ... ... 1
−a0 ... ... −an−1

−


0
0
...
1

 [ k0 ... ... Kn−1

] 
0 1 ... 1
0 ... ... ...
0 ... ... 1

−(a0 + k0) ... ... −(an−1 + kn−1)


So the closed-loop denominator

aC.L.(s) = det(sI −AC.L) = sn + (a0 + k0)sn−1 + ...+ (an−1 + kn−1).

Using u = −Kx we have direct control over every closed-loop denominator coefficient. We can place
the root anywhere we want in the s plane.

Example: Detailed block diagram of SHO with full state feedback.

Of course this assumes we have access to the ẋ state, which we actually do not in practice.

However, let us ignore that ‘minor’ practical detail for now. (The Kalman filter will show us how to
get ẋ form x.)
With full state feedback we have (assume D = 0).
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Fig. 42: SHO with full state feedback

Fig. 43: Diagram of state space system with full state feedback

So

ẋ = Ax+B[u+ ufb] = Ax+Bu+BKufb

ẋ = (A−BK)x+Bu

ufb = −Kx

y = Cx

With full state feedback, we get a new closed loop matrix.

AC.L = (AO.L −BK)

Now all stability information is given by the eigen values of the new A matrix.
The linear time-invariant system ẋ = Ax+ Bu y = Cx is said to be controllable if it is possible to find
some input u(t) that will transfer the initial state x(0) to the origin of state-space, x(t0) = 0, with t0
finite.

The solution of the state equation is

x(t) = φ(t)x(0) +
∫ t

0 φ(τ)Bu(t− τ)dτ .

For the system to be controllable, a function u(t) must exist that satisfies the equation

0 = φ(t0)x(0) +
∫ t0

0 φτBu(t0 − τ)dτ .
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With t0 finite, it can be shown that this condition is satisfied if the controllability matrix

CM = [B AB A2B ....An−1B] was inverse. This is equivalent to the matrix CM having full rank
(rank n for an nth order differential equation).
Observable:

– The linear time-invarient system is said to be observable if the initial conditions x(0) can be
determined from the output function y(t), 0 ≤ t ≤ t1 where t1 is finite with y(t) = Cx =
Cφ(t)x0 + C

∫ t
0 φ(τ)Bu(t− τ)dτ .

– The system is observable if this equation can be solved for x(0). It can be shown that the system

is observable if the matrix: OM =


C
CA
...

CAn−1

 .

– Was inverse. This is equivalent to the matrix CM having full rank (rank n for an n-th order
differential equation).

7 Discrete systems
Digital control is a branch of control theory that uses digital computers to act as a system. Depending on
the requirements, a digital control system can take the form of a microcontroller to an ASIC to a standard
desktop computer. Since a digital computer is a discrete system the Laplace transform is replaced with
the Z-transform. Also since a digital computer has finite precision (see Quantization) extra care is needed
to ensure the error in coefficients, A/D conversion, D/A conversion, etc. is not producing undesired or
unplanned effects.

A discrete system or discrete-time system, as opposed to a continuous-time system, is one in which
the signals are sampled periodically. It is usually used to connote an analog sampled system, rather than
a digital sampled system, which uses quantized values.

Where do discrete systems arise?

Typical control engineering example: Assume the DAC+ADC are clocked at sampling period T .
Then u(t) is given by: u(k) ≡ uc(t); kT ≤ t < (k + 1)T

y(k) ≡ yc(kT ); k = 0, 1, 2, ...

Suppose: time continuous system is given by state-space ẋc(t) = Axc(t) +Buc(t);xc(0) = x0

yc(t) = Cxc(t) +Duc(t).

7.1 State space description
Can we obtain a direct relationship between u(k) and y(k)? We want an equivalent discrete system:
Yes! we can obtain an equivalent discrete system.
Recall xx(t) = eAtxc(0) +

∫ t
0 e

Aτ .Buc(t− τ)dτ .

From this xc(kT + T ) = eATxc(kT ) +
∫ T

0 eAτ .Buc(kT − τ)dτ .

Observe that u(kT + T − τ) = u(kT ) for τε[0, T ] i.e. u(kT + T − τ) is constant u(kT ) over
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Fig. 44: Schematic of digital controller with analog-to-digital and digital-to-analog converters. The continuous
and discretized signals are shown in the feedback loop.

Fig. 45: Conversion from continuous system to discrete transfer function

τε[0, T ]

can pull out of integral

=⇒ xc(kT + T ) = eAtxc(kT ) + (
∫ t

0 e
Aτ .Bdτ)uc(kT )

x(k + 1) = Adx(k) +Bdu(k)

y(k) = Cdx(k) +Ddu(k)

x(0) = xc(0).

So Ad = eAT ,Bd =
∫ T

0 eAτ .BdτBDd = C , Dd = D.

So we have an exact (note: x(k + 1) = x(k) + ẋ(k)T + O(.)) discrete time equivalent to the time
continuous system at sample times t = kT− no numerical approximation! A linear ordinary difference
equation looks similar to a LODE

y(k+n)+an−1y(k+n−1)+...+a1y(k+1)+a0y(k) = bmu(k+m)+...+b1u(k+1)+b0u(k)n ≥ m;
assumes initial values yy(n− 1), ...y(1), y(0) = 0.
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7.2 Z transform
Z transform of the LODE yields (linearity of Z transform):

znY (z) + zn−1an−1Y (z) + ...+ za1y(z) + a0Y (z) = zmbmU(z) + ..+ zb1U(z) + b0U(z)

it follows the input–output relation:

(zn + zn−1an−1 + ...+ za1 + a0)Y (z) = (zmbm + ...+ zb1 + b0)U(z)

Y (z) = zmbm+...+zb1+b0
zn+...+za1+a0

U(z)

Y (z) = G(z)U(z).

Once again: if U(z) = 1, (u(k) = δ(k)), then Y (z) = G(z).

Transfer function of system is the Z transform of its pulse response!
x(k + 1) = Adx(k) +Bdu(k)

y(k) = Cx(k) +Du(k).

Applying the Z transform on first equation:

z.X(z) − zx(0) = AdX(z) +BdU(z)

(zI −Ad)X(z) = zx(0) +Bu(z)

X(z) = (zI −A)−1zx(0) + (zI −Ad)−1BU(z). Homogeneous solution.

NOW: Particular solution:

Y (z) = CX(z) +DU(z) = C(zI −Ad)−1zx(0) + (C(zI −Ad)−1B +D)U(z)

if x(0) = 0 then we get the input–output relation:

Y (z) = G(z)U(z) with G(z) = C(zI −Ad)−1B +D.

Exactly as for the continuous systems.

To analyse discrete-time systems: the Z transform (analog to Laplace transform for time-continuous
system).
It converts linear ordinary difference equation into algebraic equations: easier to find a solution of the
system!
It gives the frequency response for free!
Z transform == generalized discrete-time Fourier transform

Given any sequence f(k) the discrete-time Fourier tranform is F (ω̃) = Σ∞k=−∞f(k)e−iωk

ω = 2Πf, f = 1
T . The sampling frequency in Hz, T : difference/time between two samples.

In the same spirit: F (z) = Z[f(k)] = Σ∞k=0f(k)z−k
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with z a complex variable. Note: if f(k) = 0 for k = −1,−2, ... then F̃ (ω) = F (z = ejω).

7.3 Stability
A discrete LTI system is BIBO stable if |u(k)| < M,∀k = |y(k)|;∀k

|y(k)| = |Σk
0u(k − i)h(i)| ≤ Σk

0 |u(k − i)||h(i)| ≤MΣk
0|h(i)| ≤MΣ∞0 |h(i)|.

For LODE state space system: H(z) = α πi=1(z−zi)
πni=1(z−pi) = Σk

i=1βiTi(z).

With partial fraction of the rational function, once again pole locations tell us a lot about the shape
of pulse response.
Zeros determine the size of βi. In general a complex pair→ oscillatory growth/damping.

Fig. 46: Stability diagram for discrete system. The system is stable if the poles are located inside the unity circle.

A real pole→ exponential growth/decay but may be oscillatory too (e.g. rn1(n) where r < 0).

The farther inside the unit circle → the faster the damping → the higher the stability, i.e. |pi| ≤ 1 →
system stable. Stability directly from state space: exactly as for cts systems, assuming no pole-zero can-
cellations and D = 0

H(z) = b(z)
a(z) = C(zI −Ad)−1Bd = Cadj(zI−Ad)Bd

det(zI−Ad)

b(z) = Cadj(zI −Ad)Bd a(z) = det(zI −Ad).

The poles are eigenvalues of Ad. So check stability, use an eigenvalue solver to get eigenvalues of
the matrix Ad, then if |λi| < 1 for all i then the system is stable. Where |λi| is the ith e-value of Ad.
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7.4 Cavity model
Converting the transfer function from the continuous cavity model to the discrete model:

H(s) = ω12
∆ω2+(s+ω12)2

[
s+ ω12 −∆ω

∆ω s+ ω12

]
.

The discretization of the model is represented by the z transform:

H(z) = (1− 1
z )z(H(s)

s ) = z−1
z .zL−1H(s)

s |t=kTs

H(z) =
ω12

∆ω2 + ω2
12

.

[
ω12 −∆ω
∆ω ω12

]
− (

ω12

∆ω2 + ω2
12

.
z − 1

z2 − 2zeω12Ts .cos(∆ωT )s + e2ω12Ts
)

.((z − eω12Ts .cos(∆ωTs)).
[
ω12 −∆ω
∆ω ω12

]
)− eω12Ts .sin(∆ωTs).

[
∆ω ω12

−ω12 ∆ω

]
.

Given: x(k + 1) = Ax(k) +Bu(k)

z(k) = Cx(k). Assume D = 0 for simplicity.

8 Optimal control:
Optimal control deals with the problem of finding a control law for a given system such that a certain
optimality criterion is achieved. A control problem includes a cost functional that is a function of state
and control variables. An optimal control is a set of differential equations describing the paths of the
control variables that minimize the cost functional.

Suppose the system is unstable or almost unstable. We want to find ufb(k) which will bring x(k) to
zero, quickly, from any initial condition.

Fig. 47: Formulation of the problem of the optimal controller

A quadratic form is a quadratic function of the components of a vector:

x =
[
x1

x2

]
f(x) = f(x1, x2) = ax2

1 + bx1x2 + cx1 + dx2
2

[x1, x2]
[
a 1

2b
1
2b d

] [
x1

x2

]
+
[
c 0

] [ x1

x2

]
f(x) = xTQx, quadratic part, +P Tx, linear part, +e constant.
What do we mean by ‘bad’ damping and ‘cheap’ control? We now define precisely what we mean. Con-
sider:

J ≡ Σ∞i=0x
T
i Qxi + uTi Rui.
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Fig. 48: Tradeoff between bad damping and cheap control (left side) and good damping and expensive control
(right)

The first term penalizes large state executions, the second penalizes large control. Q ≥ 0, R > 0

Can there be a tradeoff between state excursions and control by varying Q and R?

Large Q −→ ‘good’ damping important

Large R −→ actuator effort ‘expensive’

(Linear quadratic regulator)

xi+1 = Axi +Bui; x0

Find control sequence u0, u1, u2, ... such that J = Σ∞i=0x
T
i Qxi + uTi Rui = minimum.

Answer: The optimal control sequence is a state feedback sequence ui∞0

ui = −Koptxi

Kopt = (R+BTSB)−1BTSA

S = ATSA+Q−ATAB(R+BTSB)−1BTSA

Algebraic Riccati Equation (ARE) for discrete-time systems.

Note: Since ui = state feedback, it works for any initial state x0.
Remarks:

1. So optimal control, ui = Koptxi is state feedback! This is why we are interested in state feedback.
2. Equation ARE is a matrix quadratic equation. Looks pretty intimidating but computer can solve in

a second.
3. No tweaking! Just specify A,B,C,D and Q and R, press return button, LQR routine spits out
Kopt− done (of course guaranteed optimal in the sense that it minimizes).

4. Design is guaranteed optimal in the sense that it minimizes.
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Jlqr(x0, ui
∞
0 x

T
i Qxi + uTi Rui

(Of course that does not mean it is the ‘best’ in the absolute sense.)
As we vary the Q/R ratio we get whole family of klqr’s, i.e., can trade off between state excursion
(damping) vs actuator effort (control)

Fig. 49: Tradeoff between control effort and rms state excursions

Our optimal control has the form uopt(k) = −K(k)xopt(k).

This assumes that we have complete state information xopt(k). This is not actually the case, e.g., in
SHO, we might have only a position sensor but not a velocity sensor.

8.1 The Kalman filter
How can we obtain ‘good’ estimates of the velocity state by just observing the position state?

The sensors may be noisy and the plant itself may be subject to outside disturbances (process noise)
i.e., we are looking for this:

Fig. 50: Formulation of the problem to be solved by the Kalman filter

x(k + 1) = Ax(k) +Bw(k)

z(k) = Cx(k)

y(k) = Cx(k) + v(k). Assumes also x(0) is random and Gaussian and that x(k), w(k) + v(k) are
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Fig. 51: Concept of the estimator which provides a best state estimate from model and noisy sensor signal

all mutually independent for all k.

Find: x̂(k|k − 1) optimal estimate of x(k) given y0, ..yk−1 such that ‘mean squared error’.

E[‖x(k) − x̂(k|k − 1)‖22] = minimal.

Fact from statistics: x̂(k|k − 1) = E[x(k)|(y0, ..., yk−1)] The Kalman filter is an efficient algorithm
that computes the new x̂i+1|i (the linear-least-mean-square estimate) of the system state vector xi+1,
given y0, ..yi, by updating the old estimate x̂i|i−1 and old ˜xi|i−1 (error). The Kalman filter produces

Fig. 52: Update algorithm for the Kalman filter

x̂i+1|i from x̂i|i−1 (rather than x̂i|i, because it ‘tracks’ the system ‘dynamics’. By the time we compute
x̂i|i from x̂i|i−1, the system state has changed from xi.

The Kalman filter algorithm can be divided into a measurement update and a time update:

Fig. 53: Separation between measurement and time updates in the Kalman filter

Measurement update(M.U): x̂i|i = x̂i|i−1 + Pi|i−1C
T (Cpi|i−1C

T + V )−1(yi − Cx̂i|i−1)

pi|i = Pi|i−1 − Pi|i−1C
T (CPi|i−1C

T + V )−1Cpi|i−1.
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Time update (T.U.): x̂i+1|i = Ax̂i|i and Pi+1|i = Api|iAT +BWBT .

With initial conditions: x̂0|−1 = 0 and ˆp0|−1 = X0.
By plugging M.U equations in to T.U equations one can do both steps at once:

x̂i+1|i = Ax̂i|i = Ax̂i|i−1 +Api|i−1C
T (Cpi|i−1C

T + V )−1(yi − Cx̂i|i−1).

x̂i+1|i = Ax̂i|i−1 + Li(yi − Cx̂i|i−1) where Li ≡ A
(
pi|i−1C

T (Cpi|i−1C
T + V )−1

)
pi+1|i = Api|iAT +BWBT = A[pi|i−1 − pi|i−1C

T (Cpi|i−1C
T + V )−1CPi|i−1]AT +BWBT

pi+1|i = Api|iAT +BWBT −Api|i−1C
T (Cpi|i−1C

T + V )−1(Cpi|i−1 − 1)AT

Fig. 54: Model of Kalman filter with time varying gain

Plant equations: xi+1 = Axi +Bui and yi = Cxi + vi.

Kalman filter: x̂i+1|i = Ax̂i|i−1 + Li(yi − ŷi|i−1) and yi|i−1 = Cx̂i|i−1. If v = w = 0 Kalman
filter can estimate the state precisely in a finite number of steps.
Remarks:

1. Since yi = Cxi + vi and ŷi|i−1 = Cx̂i can write estimator equation as x̂i+1|i = Ax̂i|i−1 +
Li(Cxi + vi − Cx̂i|i−1) = (A− LiC) ˆx|i− 1 + LiCxi + vi. We can combine this with equation
for xi+1[
xi+1

x̂i+1|i

]
=
[

A 0
LiC A− LiC

] [
xi

x̂i|i−1

]
+
[
B 0
0 1

] [
wi
vi

]
[

zi
ŷi|i−1

]
=
[
C 0
0 C

] [
xi

x̂i|i−1

]
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2. In practice, the Riccati equation reaches a steady state in a few steps. People often run with steady-
state Kalman filters, i.e.

Lss = ApssC
T (CPssCT + V )−1,

where pss = ApssA
T +BWBT −ApssCT (CPssCT + V )−1CPssA.

8.2 LQG controller
Now we are finally ready to solve the full control problem.

Fig. 55: LQG controller problem definiton

Given: xk+1 = Axk + Buk + Bwwk, zk = Cxk, yk = Cxk + vk, 〈wi, wj〉 = wδij , 〈vi, vj〉 = V δij ,
〈wi, vj〉 = 0, where wk and vk are both Gaussian. For Gaussian, K.L. gives the absolute best estimate.
Separation principle: (We will not prove this.) The separation principle states that the LGQ optimal
controller is obtained by:

1. using a Kalman filter to obtain least-squares optimal estimate of the plant state,

i.e., Let xc(k) = x̂k|k−1.
2. Feedback estimated LQR-optimal state feedback

u(k) = −KLQRxc(k) = −KLQRx̂k|k−1. One can treat problems of optimal feedback and a
state estimate separately.

Plant: ‖xk+1 = Axk + (−Buk) +Bwwk, zk = Cxk, yk = Cxk + vk‖.

LQG Controller ‖x̂k+1|k = Ax̂k|k−1 +Buk + L(yk − Cx̂k|k−1), uk = −Kx̂k|k−1

where k = −[R+BTSB]−1 + s = ATSA+Q−ATSB[R+BTSB]−1BTSA, and

L = APCT [V + CPCT ]−1 + P = APAT +BWBT [V + CPCT ]−1CPCT .
We want a controller which takes as input noisy measurements y and produces as output a feedback
signal u which will minimize excursions of the regulated plant outputs (if no pole-zero cancellation, then
this is equivalent to minimizing state excursions).

We also want to achieve ‘regulation’ with as little actuator effort u as possible.

Problem statement (mathematically) Find: controller H(z) = Cc(zI −Ac)−1Bc +Dc.
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Fig. 56: Visual representation of LQG controller

Fig. 57: LQG controller

Controller: xc(k + 1) = Acx(k + 1) = Acx(k + 1) + Bcy(k), yc(k) = Ccxc(k) which will
minimize the cost, where

JLQG =Limit
k−→∞ E[xTkQxk are r.m.s. ‘state’ excursions and +uTkRuk] is the r.m.s. ‘actuator’ effort.

‖xk+1 = Axk + (−Buk) +Bwwk, zk = Cxk, yk = Cxk + vk‖
Remarks:

1. Q and R are weighting matrices that allow trading off r.m.s. u and r.m.s. x.
2. If Q = CTρC; ρ > 0 then trade off r.m.s. z vs r.m.s. u.
3. In the stochastic LQR case, the only difference is that now we do not have complete state informa-

tion yi = Cxi + vi we have only noisy observations i.e. cannot use full state feedback.

Idea: Could we use estimated state feedback? ( i.e. −Kx̂k|k−1)
4. We can let Q/R ratio vary and we will obtain the family of LQG controllers. We can plot r.m.s. Z

r.m.s. u for each one.
So by specifying (1) system model, (2) noise variance, (3) optimally criterion JLQG and plotting
trade off curve completely specifies the limit of performance of the system i.e. which combinations
of (Zrms, Urms) are achievable by any controller’s good ‘benchmark curve’.
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Fig. 58: Tradeoff between control effort and r.m.s. error

9 System identification
System identification is a general term to describe mathematical tools and algorithms that build dynam-
ical models from measured data. A dynamical mathematical model in this context is a mathematical
description of the dynamic behaviour of a system or process.
What is system identification? Using experimental data obtained from input/output relations to model
dynamic systems.

There are different approaches to system identification depending on the model class.

Fig. 59: System with input, output and disturbances. Goal is the identification of the system from measurements
of the input and output signals.

1. Linear/non-linear
2. Parametric/non-parametric

– Non-parametric methods try to estimate a generic model (step responses, impulse responses,
frequency responses)

– Parametric methods estimate parameters in a user-specified model (transfer functions, state-
space matrices)

Identification steps: System identification is the experimental approach to process modelling.

System identification includes the following steps:

1. Experimental design: Its purpose is to obtain good experimental data, and it includes the choice
of the measured variables and of the character of the input signals.

2. Selection of model structure: A suitable model structure is chosen using prior knowledge and
trial and error.
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3. Choice of the criterion to fit: A suitable cost function is chosen, which reflects how well the
model fits the experimental data.

4. Parameter estimation: An optimization problem is solved to obtain the numerical values of the
model parameters.

5. Model validation: The model is tested in order to reveal any inadequacies.

Fig. 60: Procedure for system identification

Different mathematical models: Model description:

1. Transfer functions
2. State-space models
3. Block diagrams (e.g. Simulink)

Notation for continuous time models: Complex Laplace variable s and differential operator p

ẋ(t) =
∂x(t)
∂t

= px(t) .

Notation for discrete time models: Complex z transform variable and shift operator q

x(k + 1) = qx(k) .

Experiments and data collection: It is often good to use a two-stage approach.

1. Preliminary experiments
– Step/impulse response tests to get basic understanding of system dynamics
– Linearity, static gains, time delays constants, sampling interval

2. Data collection for model estimation
– Carefully designed experiment to enable good model fit
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– Operating point, input signal type, number of data points to collect

Preliminary experiments-step response: Useful for obtaining qualitative information about the system.

– Dead-time (delay)
– Static gain
– Time constants
– Resonance frequency

Sample time can be determined from time constants.

Rule-of-thumb: 4–10 sample points over the rise time.

Design experiment for model estimation: Input signal should excite all relevant frequencies

– Estimated model more accurate in frequency ranges where input has high energy.
– Pseudo-Random Binary Sequence (PRBS) is usually a good choice.

Trade-off in selection of signal amplitude

– Large amplitude gives high signal-to-noise ratio (SNR), low parameter variance.
– Most systems are non-linear for large input amplitudes.

Big difference between estimation of system under closed-loop control or not.

Collecting data: Sampling time selection and anti-alias are central.

Fig. 61: Concept of the measurement of discretized input and output signals

Data pre-filtering:
Remove:

– Transients needed to reach desired operating point
– Mean values of input and output values, i.e. work with

∆u[t] = u[t]− 1
N

ΣN
t=1u[t]
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∆y[t] = y[t]− 1
N

ΣN
t=1y[t]

– Trends (use ‘detrend’ in MATLAB)
– Outliers (obvious erroneous data points)

General model structure

1. Systems described in terms of differential equations and transfer functions.
2. Provides insight into the system physics and a compact model structure general-linear polynomial

model or the general-linear model.

y(k) = q−kG(q−1,Θ)u(k) +H(q−1,Θ)e(k)

– u(k) and y(k) are the input and output of the system, respectively.
– e(k) is zero-mean white noise, or the disturbance of the system.
– G(q−1,Θ) is the transfer function of the stochastic part of the system.
– H(q−1,Θ is the transfer function of the stochastic part of the system.
– General-linear model structure:

Fig. 62: Transfer functions in universal model structure

3. Provides flexibility for system and stochastic dynamics. Simpler models that are a subset of the
linear model structure.

Model structures based on input–output:

Model p̃(q) p̃e(q)
ARX B(q)

A(q)
1

A(q)

ARMAX B(q)
A(q)

C(q)
A(q)

Box–Jenkins B(q)
F (q)

C(q)
D(q)

Output error B(q)
F (q) 1

FIR B(q) 1

A(q)y[k] =
B(q)
F (q)

u[k] +
C(q)
D(q)

y[k]ory[k] = p̃(q)u[k] + p̃e(q)e[k]

Provides flexibility for system and stochastic dynamics. Simpler models that are a subset of the general

linear model structure.
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Parametric models:

1. Each of these methods has their own advantages and disadvantages and is commonly used in real-
world applications

2. Choice of the model structure to use depends on the dynamics and the noise characteristics of the
system.

3. Using a model with more freedom or parameters is not always better as it can result in the mod-
elling of non-existent dynamics and noise characteristics.

4. This is where physical insight into a system is helpful.

AR model
ARX model
ARMAX model
Box–Jenkins model
Output error model
State space model

9.1 AR model:
1. Process model where outputs are only dependent on previous outputs.
2. No system inputs or disturbances are used in the modelling.
3. Class of solvable problems is limited. For signals not for systems.
4. Time series analysis, such as linear prediction coding commonly use the AR model.

Fig. 63: AR model structure

9.2 ARX model:
Advantages:

– Is the most efficient of the polynomial estimation methods→ solving linear regression equations
in analytic form.

– Unique solution that satisfies the global minimum of the loss function.
– Preferable, especially when the model order is high.

Disadvantages:

– Disturbances are part of the system dynamics.
– The transfer function of the deterministic part G(q−1,Θ) of the system and the transfer function

of the stochastic part H(q−1,Θ) of the system have the same set of poles.
– This coupling can be unrealistic.
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– The system dynamics and stochastic dynamics of the system do not share the same set of poles all
the time.

– However, you can reduce this disadvantages if you have a good signal-to-noise ratio.
– Set the model order higher than the actual model order to minimize the equation error, especially

when the signal-to-noise ratio is low.
– However, increasing the model order can change some dynamic characteristics of the model, such

as the stability of the model.

y[k] =
B(q)
A(q)

u[k] +
1

A(q)
e[k]

Fig. 64: ARX model structure

9.3 ARMAX model:
1. Includes disturbances dynamics. ARMAX models are useful when you have dominating distur-

bances that enter early in the process, such as at the input.
For example, a wind gust affecting an aircraft is a dominating disturbance early in the process.

2. More flexibility in the handling of disturbance modelling.

y[k] =
B(q)
A(q)

u[k] +
C(q)
A(q)

e[k] .

Fig. 65: ARMAX model structure

9.4 Box–Jenkins model:
– Provides a complete model with disturbance properties modelled separately from system dynam-

ics.
– The Box–Jenkins model is useful when you have disturbances that enter late in the process.

For example, measurement noise on the output is a disturbance late in the process (not output
error model).
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y[k] =
B(q)
F (q)

u[k] +
C(Q)
D(q)

e[k]

Fig. 66: Box–Jenkins model structure

9.5 Output error model:
– Describes the system dynamics separately.
– No parameters are used for modelling the disturbance characteristics.

y[k] =
B(q)
F (q)

u[k] + e[k]

Fig. 67: Output error model structure

9.6 State space model:
1. All previous methods are based on minimizing a performance function.
2. For complex high-order systems the classical methods can suffer from several problems.
3. Find many local minima in the performance function and do not converge to global minima.
4. The user will need to specify complicated parametrization. They also may suffer potential prob-

lems with numerical instability and excessive computation time to execute the iterative numerical
minimization methods needed.

5. In addition, modern control methods require a state-space model of the system.
6. For cases such as these the State-Space (SS) identification method is the appropriate model struc-

ture.

Hint: When the model order is high, use an ARX model because the algorithm involved in ARX
model estimation is fast and efficient when the number of data points is very large. The state-
space model estimation with a large number of data points is slow and requires a large amount of
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memory. If you must use a state-space model, for example in modern control methods, reduce the
sampling rate of the signal in case the sampling rate is unnecessarily high.

x(k + 1) = Ax(k) +Bu(k) +Ke(k)

y(k) = Cx(k) +Du(k) + e(k)

x(k) : state vector (Dim. setting you need to provide for the state-space model)
y(k) : system output
u(k) : System input
e(k) : Stochastic error. A,B,C,D,K are system matrices.

7. In general, they provides a more complete representation of the system, especially for complex
MIMO systems, because similar to first-principle models.

8. The identification procedure does not involve non-linear optimization so the estimation reaches a
solution regardless of the initial guess.

9. Parameter settings for the state-space model are simpler.
10. You need to select only the order/states, of the model.
11. Prior knowledge of the system or by analysing the singular values of A.

Determine parameters: Determining the delay and model order for the prediction error meth-
ods, ARMAX, BJ, and OE, is typically a trial-and-error process.

The following is a useful set of steps that can lead to a suitable model (this is not the only method-
ology you can use, nor is this a comprehensive procedure).

1. Obtain useful information about the model order by observing the number of resonance peaks in
the non-parametric frequency response function. Normally, the number of peaks in the magnitude
response equals half the order of A(q), F (q).

2. Obtain a reasonable estimate of delay using correlation analysis and/or by testing reasonable val-
ues in a medium-sized ARX model. Choose the delay that provides the best model fit based on
prediction errors or other fit criteria.

3. Test various ARX model orders with this delay choosing those that provide the best fit.
4. Since the ARX model describes both the system dynamics and noise properties using the same set

of poles, the resulting model may be unnecessarily high in order.
5. By plotting the zeros and poles (with the uncertainty intervals) and looking for cancellations you

can reduce the model order. The resulting order of the poles and zeros are a good starting point for
ARMAX, OE and/or BJ models with these orders used as the B and F model parameters and first-
or second-order models for the noise characteristics.

6. Are there additional signals? Measurements can be incorporated as extra input signals!
7. If you cannot obtain a suitable model following these steps, additional physical insight into the

problem might be necessary (compensating for non-linear sensors or actuators and handling of
important physical non-linearities are often necessary in addition to using a ready-made model).

From the prediction error standpoint, the higher the order of the model, the better the model fits the
data because the model has more degrees of freedom. However, you need more computation time and
memory for higher orders. The parsimony principle advocates choosing the model with the smallest
degree of freedom, or number of parameters, if all the models fit the data well and pass the verification
test.
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Conclusion:

– Variety of model structures available
– Choice is based upon an understanding of the system identification method and algorithm
– System and disturbance are important
– Handling a wide range of system dynamics without knowing system physics
– Reduction of engineering effort
– Identification tools (Matlab, Matrix or LabVIEW) are available for developing, prototyping, and

deploying control algorithms.

Fig. 68: Matlab system identification tool

10 Non-linear systems
In mathematics, a non-linear system is a system which is not linear i.e. a system which does not satisfy
the superposition principle. Less technically, a non-linear system is any problem where the variable(s) to
be solved for cannot be written as a linear sum of independent components. A non-homogeneous system,
which is linear apart from the presence of a function of the independent variables, is non-linear according
to a strict definition, but such systems are usually studied alongside linear systems because they can be
transformed to a linear system as long as a particular solution is known. Generally, non-linear problems
are difficult (if possible) to solve and are much less understandable than linear problems. Even if not
exactly solvable, the outcome of a linear problem is rather predictable, while the outcome of a non-linear
is inherently not.

Properties of non-linear systems: Some properties of non-linear dynamic systems are:

– They do not follow the principle of superposition (linearity and homogeneity).
– They may have multiple isolated equilibrium points (linear systems can have only one).
– They may exhibit properties such as limit-cycle, bifurcation, chaos
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– Finite escape time: The state of an unstable non-linear system can go to infinity in finite time.
– For a sinusoidal input, the output signal may contain many harmonics and sub-harmonics with

various amplitudes and phase differences (a linear system’s output will only contain the sinusoid
at the output).

Analysis and control of non-linear systems: There are several well-developed techniques for analysing
non-linear feedback systems:

– Describing function method
– Phase plane method
– Lyapunov stability analysis
– Singular perturbation method
– Popov criterion (described in The Luré Problem below)
– Centre manifold theorem
– Small-gain theorem
– Passivity analysis

Control design of non-linear systems: Control design techniques for non-linear systems also exist.
These can be subdivided into techniques which attempt to treat the system as a linear system in a limited
range of operation and use (well-known) linear design techniques for each region:

– Gain scheduling
– Adaptive control

Those that attempt to introduce auxiliary non-linear feedback in such a way that the system can be treated
as linear for purposes of control design:

– Feedback linearization
– Lyapunov based methods
– Lyapunov redesign
– Back-stepping
– Sliding mode control

10.1 Describing function method:
– Procedure for analysing non-linear control problems based on quasi-linearization.
– Replacement of the non-linear system by a system that is linear except for a dependence on the

amplitude of the input waveform. Must be carried out for a specific family of input waveforms.
– An example might be the family of sine-wave inputs; in this case the system would be characterized

by an SIDF or sine input describing function H(A,ω) giving the system response to an input
consisting of a sine wave of amplitude A and frequency ω (this SIDF is a generalization of the
transfer function H(ω) used to characterize linear systems).

– Other types of describing functions that have been used are DFs for level inputs and for Gaussian
noise inputs. The DFs often suffice to answer specific questions about control and stability.

10.2 Phase plane method
– Refers to graphically determining the existence of limit cycles.

CONTROL THEORY

121



Fig. 69: Example of a piecewise linear function

– The phase plane, applicable for second-order systems only, is a plot with axes being the values of
the two state variables, x2 vs x1.

– Vectors representing the derivatives at representative points are drawn. With enough of these
arrows in place the system behaviour over the entire plane can be visualized and limit cycles can
be easily identified.

Fig. 70: Identification of limit cycles in the phase plane

10.3 Lyapunov stability
– Lyapunov stability occurs in the study of dynamical systems. In simple terms, if all solutions of

the dynamical system that start out near an equilibrium point xe stay near xe forever, then xe is
Lyapunov stable.

– More strongly, if all solutions that start out near xe converge to xe, then xe is asymptotically stable.
– The notion of exponential stability guarantees a minimal rate of decay, i.e., an estimate of how

quickly the solutions converge.
– The idea of Lyapunov stability can be extended to infinite-dimensional manifolds, where it is

known as structural stability, which concerns the behaviour of different but ‘nearby’ solutions to
differential equations.

10.4 Luré’s problem
1. Control systems have a forward path that is linear and time-invariant, and a feedback path that

contains a memoryless, possibly time-varying, static non-linearity.
2. The linear part can be characterized by four matrices (A,B,C,D), while the non-linear part is

Φ(y) with a sector non-linearity.
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Fig. 71: Lyapunov stability analysis in the phase plane

Fig. 72: The Luré problem decomposes the control problem in a linear forward path and a non-linear feedback
path

3. by A.I. Luré.

10.5 Popov criterion
1. The sub-class of Luré’s systems studied by Popov is described by:

ẋ = Ax+ bu, ξ̇ = u

y = cx+ dξ, u = −Φ(y) , where

2. xεR n, ξ, u, y are scalars and A, b, c, d have commensurate dimensions. The non-linear element
Φ : R→ R is a time-invariant non-linearity belonging to open sector (0,∞). This means that

Φ(0) = 0, yΦ(y) > 0∀y 6= 0 ;

Popov stability criteria: →Absolute stability. The marked region in the figure is called a sector

Fig. 73: Stability in a sector described by the Popov inequality

0 ≤ F (e) ≤ ke for e > 0
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ke ≤ F (e) ≤ 0 for e < 0

or shorter
0 ≤ F (e)

e
≤ k .

The standard control loop is absolute stable in sector [0, k], if the closed loop only has global asymptotic
stable equilibrium for any characteristic F (e) lying in this sector.

Prerequisities:
G(s) =

1
sp

1 + b1s+ ...+ bms
m

1 + a1s+ ....ansn
, m < n+ p .

No common zeros of numerators and denominators.

F (e) is unique and at least steady in intervals F (0) = 0.

One distinguishes the main case p = 0, i.e. without integrator eigen value and the singular case p 6= 0.

Cases p Sector Inequality
Ia 0 F (e)

e ≥ 0 <((1 + qjω)G(jω)) > 0
Ib 0 k ≥ F (e)

e ≥ 0 <((1 + qjω)G(jω)) > − 1
k

IIa 1, ..., n −m k ≥ F (e)
e ≥ 0 <((1 + qjω)G(jω)) > − 1

k

IIb 1, ..., n −m F (e)
e > 0 <((1 + qjω)G(jω)) ≥ 0

– The control loop is absolute stable in the given sector, when a real number q is found for all ω ≤ 0
apply on the right side of inequality.

– The Popov criteria is a sufficient condition for absolute stability of the control loop.

Geometric interpretion of the Popov inequality:

– For the case Ib and IIa, the inequality can be rewritten as follows

<((1 + qjω)G(jω)) > − 1
k

<(G(jω)) + q<(jω(G(jω))) > − 1
k

<(G(jω)) + q<(jω<(G(jω)) > −ω=(G(jω))) > − 1
k

<(G(jω)) − qω=(G(jω)) > − 1
k
−→ 1

– One defines the modified frequency plot

Gp(jω) = <(G(jω)) + jω=(G(jω))

– This frequency plot is called Popov curve, so equation 1 can be represented as

=(Gp(jω)) <
1
q

(<(Gp(jω)) +
1
k

) .

Example of Popov criteria: The non-linearity is shown as a three-point characteristic which already
hosts the amplification K of the linear subsystem. Popov frequency response locus Z = Lp(jω). The
line gkrit is tangential to the Popov frequency response locus curve and intersects the real axis at 0.1.
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Fig. 74: Example for controller non-linearity described by a three-point characteristic

Fig. 75: Graphical determination of gkrit

Fig. 76: Stability sector for the example

Popov sector is defined by the line Kpe. To verify Popov criteria the gradient of three-point characteristic
must be smaller the calculated gradient

tan α =
KLb

a

KLb

a
< 10 .

If this is true for the given inequality, then it is idle state global asymptotic stable.

11 Non-linear control
Non-linear control is a sub-division of control engineering which deals with the control of non-linear
systems. The behaviour of a non-linear system cannot be described as a linear function of the state of
that system or the input variables to that system. For linear systems, there are many well-established
control techniques, for example root-locus, Bode plot, Nyquist criterion, state-feedback, pole-placement
etc.

11.1 Gain scheduling
Gain scheduling is an approach to control of non-linear systems that uses a family of linear controllers,
each of which provides satisfactory control for a different operating point of the system.
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One or more observable variables, called the scheduling variables, are used to determine what oper-
ating region the system is currently in and to enable the appropriate linear controller.

Example: In an aircraft flight control system, the altitude and Mach number might be the schedul-
ing variables, with different linear controller parameters available (and automatically plugged into the
controller) for various combinations of these two variables.

Fig. 77: Concept of gain scheduling of controller parameters based on the scheduling variable

11.2 Adaptive control
1. Modifying the controller parameters to compensate slow time Ű varying behaviour or uncertain-

ties.
2. For example, as an aircraft flies, its mass will slowly decrease as a result of fuel consumption; we

need a control law that adapts itself to such changing conditions.
3. Adaptive control does not need a priori information about the bounds on these uncertain or time-

varying parameters.
4. Robust control guarantees that if the changes are within given bounds the control law need not be

changed.
5. Adaptive control is precisely concerned with control law changes.

There are several broad categories of feedback adaptive control (classification can vary):

Dual adaptive controllers optimal controllers. – Suboptimal dual controllers

Non-dual adaptive controllers – Model Reference Adaptive Controllers (MRACs) [incorporate a
reference model defining desired closed loop performance]

MRAC

MIA – Gradient optimization MRACs [use local rule for adjusting parameters when performance
differs from reference]

– Stability optimized MRACs
– Model Identification Adaptive Controllers (MIACs) [perform system identification while

the system is running]
– Cautious adaptive controllers [use current SI to modify control law, allowing for SI uncer-

tainty]. Non-parametric adaptive controllers
– Parametric adaptive controllers
– Explicit parameter adaptive controllers
– Implicit parameter adaptive controllers
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11.3 Feedback linearization
1. Common approach used in controlling nonlinear systems.
2. Transformation of the non-linear system into an equivalent linear system through a change of

variables and a suitable control input.
3. Feedback linearization may be applied to non-linear systems of the following form:

ẋ = f(x) + g(x)u

y = h(x)

where x is the state vector, u is the vector of inputs, and y is the vector of outputs.
4. The goal, then, is to develop a control input u that renders either the input–output map linear, or

results in a linearization of the full state of the system.

Existence of a state feedback control?

u = α(x) + β(x)y

And variable change?
z = T (x)

Pendulum example: Task: Stabilization of origin of pendulum eq.

ẋ1 = x2

ẋ2 = a[sin(x1 + δ)− sin(δ)] − bx2 + cu

1. Choose u as follows to cancel non-linear term:

u =
a

c
[sin(x1 + δ) − sin(δ)] +

v

c

From the above two equations: linear system

ẋ1 = x2

ẋ2 = −b.x2 + v

2. Stabilizing feedback controller
v = −k1x1 − k2x2

Closed loop
ẋ1 = x2

ẋ2 = k1x1 − (k2 + b)x2

3. Re-substituting to or feedback control law

u =
a

c
[sin(x1 + δ) − sin(δ)] − 1

c
(k1x1 + k2x2)
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11.4 Sliding mode control
In control theory sliding mode control is a type of variable structure control where the dynamics of a
non-linear system is altered via application of a high-frequency switching control. This is a state feed-
back control scheme where the feedback is not a continuous function of time.

This control scheme involves the following two steps:

– Selection of a hyper surface or a manifold such that the system trajectory exhibits desirable be-
haviour when confined to this manifold.

– Finding feedback gains so that the system trajectory intersects and stays on the manifold.

Advantages:
– Controllers with switching elements are easy to realize.
– The controller outputs can be restricted to a certain region of operation.
– Can also be used inside the region of operation to enhance the closed-loop dynamics.

Two types of switching controllers
– Switching between constant values
– Switching between state or output dependent values

Design of a switching controller therefore needs:
– The definition of a switching condition
– The choice of the control law inside the areas separated by the switching law

Phase plot of a closed-loop system with sliding mode controller

(y = 0, ẏ = 1 and m = 1) .

Consider a linear system

Fig. 78: Phase plot of a closed-loop system with sliding mode controller

ÿ = u

The control law
u = −ky with k > 0 .

It is clear that the controller is not able to stabilize the semi stable system that has two open-loop eigen
values of zero. The root locus plot with two branches along the imaginary axis.

Switching function:
s(y, ẏ) = my + ẏ .

With a scalar m > 0 then a variable structure control law

u = −1 s(y, ẏ) > 0, 1 s(y, ẏ) < 0 .

S. SIMROCK

128



Phase portrait with example: Consider a second-order system

ẋ1 = x2

ẋ2 = h(x) + g(x)u

g(x) and h(x) are unknown non-linear functions.

On the manifolds s = 0 motion

s = a1x1 + x2 = 0→ ẋ = −ax .
Independent of g(x) and h(x)

Goal: state feedback→ stabilize the origin.

Fig. 79: Manifolds for the example

Chattering on sliding manifold

Fig. 80: Chattering on sliding manifold

– Caused by delays (no ideal would run on manifold).
– Region s < 0→ trajectory reverses
– Delay leads to crossing again
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Disadvantages

– Low control accuracy
– Power losses
– Excitation of un-modelled of dynamics
– Can result in instabilities.
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