

Report on EUDET Mechanics

- Global Design and composite structures: Marc Anduze

- Integration Slab and thermal measurements: Aboud Falou

- Cooling systems and thermal simulations: Denis Grondin

- Gluing of ASU: David Bailey

- Interconnect system: Maurice Goodrick

CALICE meeting - Manchester

Technological prototype: EUDET module CALI

- Logical continuation to the physics prototype study which validated the main concepts: alveolar structure, slabs, gluing of wafers, integration
- Techno. Proto: study and validation of most of technological solutions wich could be used for the final detector (moulding process, cooling system, sizes of structures,...)
- Taking into account industrialization aspect of process
- Finest cost estimation of one module

Physical prototype

- 3 structures : 24 X₀ (10×1,4mm + 10×2,8mm + 10×4,2mm)
- sizes: 380×380×200 mm3
- Thickness of slabs : 8.3 mm (W=1,4mm)
- VFE outside detector
- Number of channels : 9720 (10×10 mm²)
- Weight : ~ 200 Kg

- 1 structure : ~ 23 X₀ (20×2,1mm + 9×4,2mm)
- sizes: 1560×545×186 mm3
- Thickness of slabs : 6.8 mm (W=2,1mm)
- VFE inside detector
- Number of chan. : ~37890 (5.5×5.5 mm²)
- Weight : ~ 700 Kg

EUDET - Current design

Demonstrator - Design

- We plan to build a first small demonstrator to validate all composite process before the EUDET module
- Width based on physic prototype (124 mm)
 - designed before the validation of all Eudet dimensions !!!
- Could be used for thermal studies and analysis: design of a thermal PCB and cooling system close to EUDET design
- First test of slab integration (with gluing, interconnection ...)

- 3 alveolar layers + 2 W layers
- 3 columns of cells : representative cell in the middle of the structure
- Thermal studies support
- Width of cells: 126 mm
- Identical global length : 1.3m and shape (trapezoidal)
- Fastening system ECAL/HCAL

Demonstrator – Alveolar structure

Assembled structure: Each alveolar layer • are done independently, cut to the right length and angle (•) and bonded alternatively with W plates in a second curing step. The assembling is closed by 2 composite plates • of 15 mm and 2 mm thick (from LPSC)

Demonstrator - H structure

Study of one mould for whole structures:

- Same principle than the mould used to do H physical prototype structures but using the autoclave)
- One long mould for both long and short H structures and 2 width (124 and 180 mm)

⇒ Design : *OK*

⇒ machining : *OK*

⇒ first H structure (1300×124): *OK*

H structure (126 mm)

Demonstrator - Thermal studies

Copper (400 µm)

Slab cooling tests (1 Hot ASU + 8 thermal ASU):

- Correlation with simulations (transfer coefficients, contacts ...)
- Check a thermal dissipation behaviour close to EUDET design
- Validate the cooling system (400 µm copper plate drain + pipes)

EUDET - Gluing of ASU

Principle is close to the physics prototype :

Sony Robot and precision glue dispenser tool (glue: EPO-TEK® 4110)

But more industrial:

- Vacuum system to hold PCBs and wafers during all operations
- Alignment of wafer and PCB pixels using a viewing system

EUDET – Interconnect system

- Use "Bridges" principle to link multiple connections (30-40 each) between all adjacent ASUs (embedded in the thickness)
- Different designs tested: Short Flat Flexible Cable (electrical joint)

Thin PCB (electrical & mechanical joint)

- Thermal Bonding process investigations :
 - good electrical behaviour (voltage drop, crosstalk)
 - Use Soldering setup with no stress and damage for wafers (temp & pressure parameters)
 - Remove and rework the joint (dismounting aspect)

- ⇒ Bridges design : *OK*
- ⇒ First bondings (FFC & PCB): OK
- ⇒ Electrical tests: on going
- ⇒ Re-flow system: *OK*

Schedule

MANCHESTER 1824	Gluing tests: Thermal ASUs with EUDET ASUs prototypes of EUDET wafers (Hamamastu)	Nov 08 Dec 08 Dec 08
LIR	Assembling mould design and fabrication Demonstrator (3 layers – 126 mm) EUDET module structures: design needs to be fixed Final moulds design and order	Nov 08 Dec 08 Now !!! Nov 08
	Copper drain & shield design and fabrication Integration slab tools for demonstrator and assembling Thermal slab	Nov 08 Nov 08 Dec 08
Grenebie	Experimental setup for demonstrator Cooling pipes for EUDET Updated numerical simulations for demonstrator	Oct 08 Nov 08 Oct 08
UNIVERSITY OF CAMBRIDGE	Soldering setup parameters (pressure, temp) Interconnection tests on ASUs + wafers	Oct 08 Dec 08