ILC Single Stage Bunch Compressor Studies

Andrea Latina (FNAL)

February 20, 2009
ILC LET Beam Dynamics - Phone Meeting

- Description of BC1S and Update
- Beam Dynamics Simulations (misalignments, coupler kicks)
- Conclusions and Work Plan

Optics and General Description

- Based on the original design at 5 GeV by PT in April 2005:
http://www-project.slac.stanford.edu/ilc/acceldev/LET/BC/OneStageBC.html

- six cryomodules for acceleration
- wiggler, 6-cells Raubenheimer type: a single bend magnet between quads in a FODO lattice
\Rightarrow NEW! beam diagnostics section and extraction kickers, adapted from $\mathrm{BC} 2+$ booster linac from 5 to 15 GeV

Design Characteristics

- The beam properties at injection are:
- Charge: $2 \mathrm{e} 10(3.2 \mathrm{nC}$)
- Energy: 5 GeV
- Energy spread: 0.15\% (actually 0.13\% from Damping Ring)
- Bunch Length: 6 mm
- Properties of the bunch compressor are:
- Integrated voltage: 1275.2 MV @ 1.3 GHz
- Cavity gradient: 25.6 MV/m
- Accelerating Structures: 48 (6 cryomodules)
- Phase: -119.5 degrees
- Energy Loss: 627.9 MeV
- R_{56} : - 147.5 mm
\Rightarrow Desired final bunch length: 0.3 mm
\Rightarrow Energy spread at ML entrace (baseline): 1.07\%

BC1S Single Stage Schematics

- AHEAD : turnaround, spin rotator, emittance measurement station, beam diagnostics
- BC1S is composed by the following consecutive parts
- BC0 : entrance
- BC1 RF : RF section, 6 CM, 48 accelerating structures, ~ 75 meters
- BC1 RF2WIG : matching section from RF to wiggler
- BC1 WIGGLER : 6-cells, ~ 24 meters long each
- BC1WIG2DIAG : matching section to diagnostics
- BC2 DIAG : 4 laserwires, phase monitor, bunch length monitor (LOLA cavity)
- BC2 ML_1 : kickers to the extraction line
- BC2_ML_2 : matching section to main linac FODO
- BC1B00STER : accelerating section from 5 to 15 GeV , adapted from ML ILC2007b
\Rightarrow Total length is now : 896.34 m

$B C 1 S$ vs $B C 1+B C 2$

BC1S: total length $=896.34 \mathrm{~m}$

BC1STAGE	number	unit	total
units	2	-	2
gradient	$25.6 \mathrm{MV} / \mathrm{m}$	-	-
cryo-modules	$2 \times(\mathrm{CMQ}-\mathrm{CMQ}-\mathrm{CMQ})$	-	6
quadrupoles	45	-	45
bpms	45	-	45
acc structures	$2 \times(8+8+8)$	-	48
length	433.37	m	433.37

BC1S_BOOSTER	number	unit	total
units	12	-	12
gradient	$31.5 \mathrm{MV} / \mathrm{m}$	-	-
cryo-modules	$12 \times(\mathrm{CM}-\mathrm{CMQ}-\mathrm{CM})$	-	36
quadrupoles	12	-	12
bpms	12	-	12
acc structures	$12 \times(9+8+9)$	-	312
length	462.97	m	462.97

$B C 1+B C 2:$ total length $=1093.5 \mathrm{~m}$

BC1	number	unit	total
units	1	-	1
gradient	$18.0 \mathrm{MV} / \mathrm{m}$	-	-
cryo-modules	(CMQ-CMQ-CMQ)	-	3
quadrupoles	29	-	29
bpms	27	-	27
acc structures	$(8+8+8)$	-	24
length	221.8	m	221.8

BC2	number	unit	total
units	15	-	15
gradient	$30.2 \mathrm{MV} / \mathrm{m}$	-	-
cryo-modules	$15 \times(\mathrm{CM}-\mathrm{CMQ}-\mathrm{CM})$	-	45
quadrupoles	29	-	29
bpms	27	-	27
acc structures	$15 \times(9+8+9)$	-	390
length	871.66	m	871.66

Design Beam Profile

- Nominal beam parameters at exit
- blength $=266 \mu \mathrm{~m}$
- energy $=4.3797 \mathrm{GeV}$
- espread $=4.13 \%$
\Rightarrow espread @ $15 \mathrm{GeV} \simeq$ 1.2\%

\Rightarrow Notice that the nominal value of the energy spread at the entrance of the ML is 1.07%

Beam Profile Optimization

- Nominal beam parameters at exit
- blength $=266 \mu \mathrm{~m} \Rightarrow$ we would like $300 \mu \mathrm{~m}$
- energy $=4.3797 \mathrm{GeV}$
- espread $=4.13 \%$
- espread @ $15 \mathrm{GeV}=1.2 \% \Rightarrow$ we would like 1.07%
$\Rightarrow 300 \mu \mathrm{~m}$ and 1.07% correspond to the beam parameters for the baseline design
- Cavities' phase and gradient as well as wiggler's R_{56} were scanned to optimize the beam profile at the entrance of the main linac
- Optimization was run to match the following characteristics:

1. $300 \mu \mathrm{~m}$ bunch length
2. 1.07% energy spread
3. minimal correlation coefficient in the longitudinal phase space $E-z$
\Rightarrow Simplex on rf gradient (1), rf phase (2), wiggler angle $\left(R_{56}\right)(3)$ to minimize:

$$
M=\left(1-\frac{\Delta E / E}{1.07 \%}\right)^{2}+\left(1-\frac{\sigma_{z}}{300 \mu \mathrm{~m}}\right)^{2}+10 \cdot \operatorname{corrcoeff}(\{\mathrm{E}\},\{\mathrm{z}\})^{2}
$$

Beam Profile Optimization Results

- Initial Parameters
- gradient $=25.6 \mathrm{MV} / \mathrm{m}$
- espread $=0.15 \%$
- blength $=6 \mathrm{~mm}$
- wiggler angle $=0.03935 \mathrm{rad}$
\Rightarrow Optimization 1
- wiggler not changed
- blength $=301.18 \mu \mathrm{~m}$
- energy $=4.2897 \mathrm{GeV}$
- rf gradient $=25.517 \mathrm{MV} / \mathrm{m}$
- rf phase $=-124.45$
- espread $=3.88789 \%$
- espread @ $5 \mathrm{GeV}=3.33559 \%$
- espread @ $15 \mathrm{GeV}=1.11 \%$
- Nominal exit parameters
- blength $=268.88 \mu \mathrm{~m}$
- energy $=4.3797 \mathrm{GeV}$
- espread $=4.13 \%$
- espread @ $5 \mathrm{GeV}=3.6 \%$
\Rightarrow Optimization 2
- blength $=301.20 \mu \mathrm{~m}$
- energy $=4.4143 \mathrm{GeV}$
- rf gradient $=23.580 \mathrm{MV} / \mathrm{m}$
- rf phase $=-122.38$
- wiggler angle $=0.042207 \mathrm{rad}$
- espread $=3.5452 \%$
- espread @ $5 \mathrm{GeV}=3.12989 \%$
- espread @ $15 \mathrm{GeV}=\underline{1.07 \%}$

Longitudinal Phase Space Before and After Optimization

- Before optimization
- Bunch length $=265 \mu \mathrm{~m}$
- energy spread $=4.13 \%$
- energy spread @ $15 \mathrm{GeV}=1.18 \%$
- After optimization
- Bunch length $=300 \mu \mathrm{~m}$
- energy spread $=3.54 \%$
- energy spread © $15 \mathrm{GeV}=1.07 \%$
\Rightarrow Before

Particle Tracking with Placet

- Beam profile at the end of the Main Linac

Particle Tracking Using Placet

- Emittance along BC1S + BOOSTER + LINAC

\Rightarrow Practically, no emittance growth \Rightarrow good matching between all sections

Particle Tracking Using Placet

- Beam sizes along BC1S + BOOSTER

Emittance Growth Due to Element Misalignment

- BC1S and BOOSTER are considered (using 58 correctors and 58 BPMs)
- Imperfections
- Misalignments: "COLD" model

$\sigma_{\text {quad }}$	$=300 \mu \mathrm{~m}$	
$\sigma_{\text {quad roll }}$	$=300 \mu \mathrm{rad}$	quadrupole position error
$\sigma_{\text {cav }}$	$=300 \mu \mathrm{~m}$	cadrupole roll error
$\sigma_{\text {cav pitch }}$	$=300 \mu \mathrm{rad}$	cavity position error
$\sigma_{\text {sbend angle }}$	$=300 \mu \mathrm{rad}$	sbend angle error
$\sigma_{\text {bpm }}$	$=300 \mu \mathrm{~m}$	
bpm position error		
error:	$\sigma_{\text {bpmres }}=1 \mu \mathrm{~m}$	

- All imperfections are applied to both BC1S and BOOSTER
- Tracking Setup
\Rightarrow Short-range wakefields in the cavities are taken into account
\Rightarrow Each bending magnet is simulated with 100 thin lenses (because of strong non linearity)
\Rightarrow Synchrotron radiation is turned off
\Rightarrow full 6d tracking in whole bunch compressor

Emittance Growth due to Element Misalignment

- Alignment Procedure
- 1-to-1 Correction
- Dispersion Free Steering
- a phase offset is applied to the RF cavities of the BC1S in order to generate the energy difference for the DFS's test beams
- the test beams are synchronized to the BOOSTER's RF phase at the BOOSTER entrance
- Dispersion bumps optimization
- as there are no skew quadrupoles in the lattice (yet), we used two numerical dispersion bumps
- two dispersion bumps are used: one at the entrance and the other at the exit of BC1S
- Reminder: Dispersion Free Steering

$$
\chi^{2}=\sum_{i=1}^{n} y_{0, i}^{2}+\sum_{j=1}^{m} \sum_{i=1}^{n} \omega_{1, j}\left(y_{j, i}-y_{0, i}\right)^{2}
$$

\Rightarrow we make a scan of the relative weights to find the optimum

Simulation Setup

- Beam properties at injection are:
- Charge: $2 \mathrm{e} 10(3.2 \mathrm{nC}$)
- Energy: 5 GeV
- Energy spread: 0.15\%
- Bunch Length: 6 mm
- Beam model : 50000 single-particles
\Rightarrow Two cases have been studied:
- all misalignments applied at the same time
- each individual contribution at once
- Procedure
\Rightarrow Scan of the DFS's weight
$\Rightarrow 40$ machines (random seeds) have been simulated for each case

Vertical Emittance Growth due to Cavity Pitch

\Rightarrow In this case, final vertical emittance growth is 1 nm

Vertical Emittance Growth due to All Misalignments

Summary Table of Vertical Emittance Growths

- For $w=512$ and each individual misalignment

Misalignment	$\Delta \epsilon_{y}$
bpm position	0.74 nm
cavity position	0.24 nm
quadrupole position	0.24 nm
sbend position	0.23 nm
cavity pitch	0.98 nm
bpm resolution	1.60 nm
TOTAL	$\mathbf{3 . 3 7} \mathrm{nm}$

\Rightarrow Actually, the SUM of all contributions would be 4.03 nm , not 3.37 nm , but this is an OVERESTIMATION, since it does not include the coupling between BPM resolution error and elements misalignment

RF-Kick and Wakefields in the Couplers

- We have considered the impact of Couplers' Wakes and RF-Kick in BC1S
- and its correction using 1-to-1 steering and dispersion bumps

\Rightarrow Final vertical emittance growth is 2.2 nm

RF-Kick and Wakefields in the Couplers in BC1+BC2

- Let's compare with the impact of these kicks on the baseline design ILC2007b \Rightarrow effect in the whole BC: unpublished result!
- Couplers' kicks and their correction using 1-to-1 steering and dispersion bumps

\Rightarrow Final vertical emittance growth is $\Delta \epsilon_{y} \simeq 5.5 \mathrm{~nm}$

RF-Kick and Wakes in the Couplers: CrabCavity correction

- One option to counteract these kicks is using a Crab Cavity \Rightarrow we put one per each CM
- CrabCavity Correction (tuning voltage and phase) followed by 1-to-1 and dispersion bumps

RF-Kick+Wakes: correction with 6 crab cavities and 1-to-1

\Rightarrow Notice that the final vertical emittance growth is reduced! It's $\Delta \epsilon_{y}=1.6 \mathrm{~nm}$ (it was 2.2 nm without CrabCavities)

Summary Table of Vertical Emittance Growths

- For RF-Kick and Wakefields induced by the Couplers
$\Rightarrow \mathrm{BC1S}$

Correction algorithm	$\Delta \epsilon_{y}$ RF-Kick	$\Delta \epsilon_{y}$ Wakes	$\Delta \epsilon_{y}$ Total
1-to-1 correction + bumps	1.9 nm	1.4 nm	2.2 nm
crab cavity correction + bumps	1.5 nm	0.8 nm	1.6 nm

$\Rightarrow \mathrm{BC} 1+\mathrm{BC} 2$

Correction algorithm	$\Delta \epsilon_{y}$ RF-Kick	$\Delta \epsilon_{y}$ Wakes	$\Delta \epsilon_{y}$ Total
1-to- 1 correction + bumps	1.59 nm	2.8 nm	5.5 nm

Conclusions and Work Plan

- Replace the current Wiggler with the schema presented by Seletskiy, Tenenbaum at PAC 2007
- they have equivalent cell length (~ 24 meters) but,
- at cost of more elements, the new schema allows more flexibility:
- skew quadrupoles, coupling correction, ...
- Simulations showed that major contributions to emittance growth come from:
- Bpm Misalignment for small DFS weights:
- this requires \rightarrow better alignment (check with respect to the quad centers)
- Cavity pitches:
- test the crab cavity correction option
- introduce a pitch in the cryomodules to compensate it (and the couplers' kicks at the same time)
- Study
\Rightarrow the impact of the couplers' RF-Kick and wakes in the booster linac
\Rightarrow the impact of ISR and CSR
\Rightarrow the impact of a 5 GeV beam with large energy spread (3.54%) on the extraction line
- the extraction line might need to be moved right before the ML entrance

