ILC Single Stage Bunch Compressor Studies

Andrea Latina (FNAL)

February 20, 2009

ILC LET Beam Dynamics - Phone Meeting

- Description of BC1S and Update
- Beam Dynamics Simulations (misalignments, coupler kicks)
- Conclusions and Work Plan

Optics and General Description

• Based on the original design at 5 GeV by PT in April 2005:

http://www-project.slac.stanford.edu/ilc/acceldev/LET/BC/OneStageBC.html

- six cryomodules for acceleration
- wiggler, 6-cells Raubenheimer type: a single bend magnet between quads in a FODO lattice
- \Rightarrow **NEW!** beam diagnostics section and extraction kickers, adapted from BC2 + booster linac from 5 to 15 GeV

Design Characteristics

- The beam properties at injection are:
 - Charge: 2e10 (3.2 nC)
 - Energy: 5 GeV
 - Energy spread: 0.15% (actually 0.13% from Damping Ring)
 - Bunch Length: 6 mm
- Properties of the bunch compressor are:
 - Integrated voltage: 1275.2 MV @ 1.3 GHz
 - Cavity gradient: 25.6 MV/m
 - Accelerating Structures: 48 (6 cryomodules)
 - Phase: -119.5 degrees
 - Energy Loss: 627.9 MeV
 - R_{56} : -147.5 mm
- \Rightarrow Desired final bunch length: 0.3 mm
- \Rightarrow Energy spread at ML entrace (baseline): 1.07%

BC1S Single Stage Schematics

- AHEAD : turnaround, spin rotator, emittance measurement station, beam diagnostics
- BC1S is composed by the following consecutive parts
 - BC0 : entrance
 - BC1 RF : RF section, 6 CM, 48 accelerating structures, \sim 75 meters
 - BC1 RF2WIG : matching section from RF to wiggler
 - BC1 WIGGLER : 6-cells, \sim 24 meters long each
 - BC1WIG2DIAG : matching section to diagnostics
 - BC2 DIAG : 4 laserwires, phase monitor, bunch length monitor (LOLA cavity)
 - BC2 ML_1 : kickers to the extraction line
 - BC2_ML_2 : matching section to main linac FODO
 - BC1BOOSTER : accelerating section from 5 to 15 GeV, adapted from ML ILC2007b

 \Rightarrow Total length is now : 896.34 m

BC1S vs BC1+BC2

BC1STAGE	number	unit	total
units	2	-	2
gradient	25.6 MV/m	-	-
cryo-modules	$2 \times (CMQ-CMQ-CMQ)$	-	6
quadrupoles	45	-	45
bpms	45	-	45
acc structures	2×(8+8+8)	-	48
length	433.37	m	433.37

BC1S: total length = 896.34 m

BC1S_BOOSTER	number	unit	total
units	12	-	12
gradient	31.5 MV/m	-	-
cryo-modules	$12 \times (CM-CMQ-CM)$	-	36
quadrupoles	12	-	12
bpms	12	-	12
acc structures	$12 \times (9 + 8 + 9)$	-	312
length	462.97	m	462.97

BC1+BC2: total length = 1093.5 m $\,$

BC1	number	unit	total
units	1	-	1
gradient	18.0 MV/m	-	-
cryo-modules	(CMQ-CMQ-CMQ)	-	3
quadrupoles	29	-	29
bpms	27	-	27
acc structures	(8+8+8)	-	24
length	221.8	m	221.8

BC2	number	unit	total
units	15	-	15
gradient	30.2 MV/m	-	-
cryo-modules	$15 \times (CM-CMQ-CM)$	-	45
quadrupoles	29	-	29
bpms	27	-	27
acc structures	$15 \times (9 + 8 + 9)$	-	390
length	871.66	m	871.66

Design Beam Profile

- Nominal beam parameters at exit
 - blength = 266 $\mu \rm{m}$
 - energy = 4.3797 GeV
 - espread = 4.13 %
- \Rightarrow espread @ 15 GeV \simeq 1.2%

 \Rightarrow Notice that the nominal value of the energy spread at the entrance of the ML is 1.07%

Beam Profile Optimization

- Nominal beam parameters at exit
 - blength = 266 $\mu {
 m m}$ \Rightarrow we would like 300 $\mu {
 m m}$
 - energy = 4.3797 GeV
 - espread = 4.13 %
 - espread @ 15 GeV = 1.2 % \Rightarrow we would like 1.07 %
 - \Rightarrow 300 $\mu{\rm m}$ and 1.07 % correspond to the beam parameters for the baseline design
- Cavities' phase and gradient as well as wiggler's R_{56} were scanned to optimize the beam profile at the entrance of the main linac
- Optimization was run to match the following characteristics:
 - 1. 300 μ m bunch length
 - 2. 1.07% energy spread
 - 3. minimal correlation coefficient in the longitudinal phase space E-z
- \Rightarrow Simplex on rf gradient (1), rf phase (2), wiggler angle (R_{56}) (3) to minimize:

$$M = \left(1 - \frac{\Delta E/E}{1.07\%}\right)^2 + \left(1 - \frac{\sigma_z}{300\mu m}\right)^2 + 10 \cdot \text{corrcoeff}(\{E\}, \{z\})^2$$

Beam Profile Optimization Results

- Initial Parameters
 - gradient = 25.6 MV/m
 - espread = 0.15 %
 - blength = 6 mm
 - wiggler angle = 0.03935 rad

- Nominal exit parameters
 - blength = 268.88 $\mu {\rm m}$
 - energy = 4.3797 GeV
 - espread = 4.13 %
 - espread @ 5 GeV = 3.6 %

- $\Rightarrow {\sf Optimization} \ 1$
 - wiggler not changed
 - blength = 301.18 $\mu {
 m m}$
 - energy = 4.2897 GeV
 - rf gradient = 25.517 MV/m
 - rf phase = -124.45
 - espread = 3.88789 %
 - espread @ 5 GeV = 3.33559 %
 - espread @ 15 GeV = 1.11 %

- \Rightarrow Optimization 2
 - blength = 301.20 $\mu \rm{m}$
 - energy = 4.4143 GeV
 - rf gradient = 23.580 MV/m
 - rf phase = -122.38
 - wiggler angle = 0.042207 rad
 - espread = 3.5452 %
 - espread @ 5 GeV = 3.12989 %
 - espread @ 15 GeV = 1.07 %

Longitudinal Phase Space Before and After Optimization

- Before optimization
 - Bunch length = 265 μ m
 - energy spread = 4.13 %
 - energy spread @ 15 GeV = 1.18 %

- After optimization
 - Bunch length = 300 μm
 - energy spread = 3.54 %
 - energy spread @ 15 GeV = 1.07 %

Particle Tracking with Placet

Particle Tracking Using Placet

 \Rightarrow Practically, no emittance growth \Rightarrow good matching between all sections

Particle Tracking Using Placet

Emittance Growth Due to Element Misalignment

• BC1S and BOOSTER are considered (using 58 correctors and 58 BPMs)

• Imperfections

- Misalignments : "COLD" model

$\sigma_{ m quad}$	=	$300~\mu { m m}$	quadrupole position error
$\sigma_{ m quad\ roll}$	=	$300~\mu$ rad	quadrupole roll error
$\sigma_{ m cav}$	=	$300~\mu{ m m}$	cavity position error
$\sigma_{ m cav~pitch}$	=	$300~\mu$ rad	cavity pitch error
$\sigma_{ m sbend \ angle}$	=	$300~\mu$ rad	sbend angle error
$\sigma_{ m bpm}$	=	$300~\mu{ m m}$	bpm position error

- Bpm resolution error:

 $\sigma_{\rm bpmres} = 1 \ \mu m$

• All imperfections are applied to both BC1S and BOOSTER

• Tracking Setup

- \Rightarrow Short-range wakefields in the cavities are taken into account
- \Rightarrow Each bending magnet is simulated with 100 thin lenses (because of strong non linearity)
- \Rightarrow Synchrotron radiation is turned off
- \Rightarrow full 6d tracking in whole bunch compressor

Emittance Growth due to Element Misalignment

• Alignment Procedure

- 1-to-1 Correction
- Dispersion Free Steering
 - a phase offset is applied to the RF cavities of the BC1S in order to generate the energy difference for the DFS's test beams
 - the test beams are synchronized to the BOOSTER's RF phase at the BOOSTER entrance
- Dispersion bumps optimization
 - as there are no skew quadrupoles in the lattice (yet), we used two numerical dispersion bumps
 - two dispersion bumps are used: one at the entrance and the other at the exit of BC1S
- Reminder: Dispersion Free Steering

$$\chi^2 = \sum_{i=1}^{n} y_{0,i}^2 + \sum_{j=1}^{m} \sum_{i=1}^{n} \omega_{1,j} (y_{j,i} - y_{0,i})^2$$

 \Rightarrow we make a scan of the relative weights to find the optimum

Simulation Setup

- Beam properties at injection are:
 - Charge: 2e10 (3.2 nC)
 - Energy: 5 GeV
 - Energy spread: 0.15%
 - Bunch Length: 6 mm
 - Beam model : 50000 single-particles
- \Rightarrow Two cases have been studied:
 - all misalignments applied at the same time
 - each individual contribution at once

- Procedure

- \Rightarrow Scan of the DFS's weight
- \Rightarrow 40 machines (random seeds) have been simulated for each case

Vertical Emittance Growth due to Cavity Pitch

 \Rightarrow In this case, final vertical emittance growth is 1 nm

Vertical Emittance Growth due to All Misalignments

 \Rightarrow Large contributions from BPM misalignment and Cavity Pitch

Summary Table of Vertical Emittance Growths

- For w=512 and each individual misalignment

Misalignment	$\Delta \epsilon_y$
bpm position	0.74 nm
cavity position	0.24 nm
quadrupole position	0.24 nm
sbend position	0.23 nm
cavity pitch	0.98 nm
bpm resolution	1.60 nm
TOTAL	3.37 nm

 \Rightarrow Actually, the SUM of all contributions would be 4.03 nm, not 3.37 nm, but this is an OVERESTIMATION, since it does not include the coupling between BPM resolution error and elements misalignment

RF-Kick and Wakefields in the Couplers

- We have considered the impact of Couplers' Wakes and RF-Kick in BC1S
- and its correction using 1-to-1 steering and dispersion bumps

 \Rightarrow Final vertical emittance growth is 2.2 nm

RF-Kick and Wakefields in the Couplers in BC1+BC2

- Let's compare with the impact of these kicks on the baseline design ILC2007b \Rightarrow effect in the whole BC: unpublished result!
- Couplers' kicks and their correction using 1-to-1 steering and dispersion bumps

 \Rightarrow Final vertical emittance growth is $\Delta \epsilon_y \simeq 5.5$ nm

RF-Kick and Wakes in the Couplers: CrabCavity correction

- One option to counteract these kicks is using a Crab Cavity \Rightarrow we put one per each CM
- CrabCavity Correction (tuning voltage and phase) followed by 1-to-1 and dispersion bumps

RF-Kick+Wakes: correction with 6 crab cavities and 1-to-1

 \Rightarrow Notice that the final vertical emittance growth is reduced! It's $\Delta \epsilon_y = 1.6 \text{ nm}$ (it was 2.2 nm without CrabCavities)

Summary Table of Vertical Emittance Growths

- For RF-Kick and Wakefields induced by the Couplers

 $\Rightarrow \mathsf{BC1S}$

Correction algorithm	$\Delta \epsilon_y$ RF-Kick	$\Delta \epsilon_y$ Wakes	$\Delta \epsilon_y$ Total
1-to-1 correction + bumps	1.9 nm	1.4 nm	2.2 nm
crab cavity correction + bumps	1.5 nm	0.8 nm	1.6 nm

 \Rightarrow BC1+BC2

Correction algorithm	$\Delta \epsilon_y$ RF-Kick	$\Delta \epsilon_y$ Wakes	$\Delta \epsilon_y$ Total
1-to-1 correction + bumps	1.59 nm	2.8 nm	5.5 nm

Conclusions and Work Plan

- Replace the current Wiggler with the schema presented by *Seletskiy, Tenenbaum* at PAC 2007
 - they have equivalent cell length (\sim 24 meters) but,
 - at cost of more elements, the new schema allows more flexibility:
 - skew quadrupoles, coupling correction, ...
- Simulations showed that major contributions to emittance growth come from:
 - Bpm Misalignment for small DFS weights:
 - this requires \rightarrow better alignment (check with respect to the quad centers)
 - Cavity pitches:
 - test the crab cavity correction option
 - introduce a pitch in the cryomodules to compensate it (and the couplers' kicks at the same time)
- Study
 - \Rightarrow the impact of the couplers' RF-Kick and wakes in the booster linac
 - \Rightarrow the impact of ISR and CSR
 - ⇒ the impact of a 5 GeV beam with large energy spread (3.54 %) on the extraction line
 the extraction line might need to be moved right before the ML entrance