

Beam Tests at FLASH

John Carwardine (Argonne)
April 29, 2009

ART DOE/NSF Review April 2009: Beam Tests at FLASH (Carwardine)

Slide 1

Outline

- Brief overview of the FLASH facility
- 9mA experiment overview
- Experiment results, data analysis
- Planning for August/September studies
- Looking ahead to FY10...
- US Resources for the 9mA program
- Wrap-up

Cryomodule String Test Goals

- The highest priority goal is to demonstrate beam phase and energy stability at nominal current
- Important goals because of their potential cost impact:
 - demonstrate operation of a nominal section or RF-unit
 - determine the required power overhead
 - to measure dark current and x-ray emission
 - and to check for heating from higher order modes
- Goals needed to understand linac subsystem performance:
 - develop RF fault recognition and recovery procedures
 - evaluate cavity quench rates and coupler breakdowns
 - test component reliability

System Integration Tests

ART DOE/NSF Review April 2009: Beam Tests at FLASH (Carwardine)

Slide 3

Primary objectives of 9mA program

- Long-pulse high beam-loading (9mA) demonstration
 - 800μs pulse with 2400 bunches (3MHz)
 - 3nC per bunch
 - Beam energy 700 MeV ≤ $E_{\rm beam}$ ≤ 1 GeV
- Primary goals
 - Demonstration of beam energy stability
 - Over extended period
 - Characterisation of energy stability limitations
 - · Operations close to gradient limits
 - Quantification of control overhead
 - Minimum required klystron overhead for LLRF control
 - HOM absorber studies (cryo-load)

Primarily a
- LLRF
experiment

TTF/FLASH facility overview

ART DOE/NSF Review April 2009: Beam Tests at FLASH (Carwardine)

FLASH operations

- TTF/FLASH is used for different purposes
 - VUV and soft X-ray FEL photon source
 - Test bench for accelerator R&D
- Typical accelerator parameters for photon users:
 - 2-30 bunches (up to 200), ≤ 1nC per bunch, 1MHz bunch rate
 - 400MeV-1GeV
- 2008 machine time allocations

FEL user operation: 161 days
FEL studies: 119 days
Accelerator studies: 49 days

• The 9mA program has received 16 8hr shifts during the last three accelerator studies periods

ART DOE/NSF Review April 2009: Beam Tests at FLASH (Carwardine)

The 9mA Experiment

The (International) Team

FLASH Experts (DESY)

- laser/gun injector set-up

Bart Faartz Lars Froehlich

- general set-up - TPS installation / commissioning, BLM calibration

Florian Loehl

- optics matching & emittance

Holger Schlarb Nina Golubeva - optics & steering - optics calculations

Vladimir Balandin - optics calculations
Valeri Avvazvan - - LLRF set-up and tuning

Mariusz Grecki

- LLRF set-up and tuning Waldemar Koprek- LLRF set-up and tuning (mostly gun)
Jacek Sekutowicz- HOM absorber measurements

- LLRF (general)

Stefan Simrock Kay Rehlich Kay Wittenburg

- controls (DAQ) - diagnostics

Nick Walker

- diagnostics (BPM) - overall coordination

Katva Honkavaara Mikhail Krasilnikov

- planning - RF gun modelling

ANL

John Carwardine

- LLRF / overall coordination - data analysis, optics modeling

FNAL

Brian Chase Gustavo Cancelo - LLRF (experiment & data analysis)
- LLRF (experiment & data analysis) - DAQ applications programming

Michael Davidsaver Jinhao Ruan

- laser setup

KEK Shinichiro Michizono

- LLRF (experiment & data analysis)
- LLRF (experiment & data analysis)

Toshihiro Matsumoto SLAC

Chris Adolphsen Tom Himel

- LLRF (experiment & data analysis) - Planning & scope - LLRF (experiment & data analysis)

Shilun Pei **SACLAY**

Abdallah Hamdi

- TPS installation / commissioning

ART DOE/NSF Review April 2009: Beam Tests at FLASH (Carwardine)

-40 subscribers to ttf9mA mailing list (not all shown here)

RF/LLRF collaborators: DESY, KEK, FNAL, SLAC, ANL

The 9mA experiment in context: Addressing R&D issues of several projects

- ILC: GDE stated milestone for Technical Design Phase
 - Primary motivation and driver for the experiment
 - Important for evaluating RF overhead and gradient control
- **XFEL: Close collaboration with world-wide LLRF groups**
 - Focus (potentially accelerate) development and planning - Critical design/dev't input from "operation at limits" experience
- FLASH: Addresses many operational issues
 - Focus / accelerate upgrades and enhancements
 - Better characterization of machine
 - Towards routine high-power long-pulse operation for users

9

9mA experiment chronology

- First run (May 08)
 - Hardware failures (power-out) effectively made shifts unusable
 - Poor machine setup made bypass optics/steering virtually impossible
- Second run (September 08)
 - Significant progress on all fronts
 - Careful set-up of injector (3nC, 1MHz) resulted in 'loss-free' transmission to dump (via by-pass)
 - Vacuum incident resulted in aborted programme
- Third run (January 09)
 - Beam loss studies
 - LLRF regulation, beam loading compensation algorithms
 - Run cavities at higher gradients
- Upcoming fourth run (August/September 2009)
 - 2 weeks of 24/7 dedicated 9mA studies

ART DOE/NSF Review April 2009: Beam Tests at FLASH (Carwardine)

1

Results to date compared with the 9mA goals

	Achieved in Sept 08	Goal for Sept 09	
Bunch charge to dump	2.5nC @ 1MHz	3nC @ 3MHz	
Bunches/pulse	550 @ 1MHz	2400 @ 3MHz	
Beam pulse length	550uS	800uS	
Beam power	6kW (550x3nC/200mS @ 890MeV)	36kW (2400x3nC/200mS @ 1GeV)	
Gradient in ACC4-6	Ensemble avg: ~19MV/m	Ensemble avg: to ~27MV/m Single cavities: to ~32MV/m	

Also achieved...

Examples of studies by US collaborators

- Analysis of RF overhead, gradient, stability/jitter
 - Shilun Pei, Chris Adolphsen (SLAC)
- LLRF performance and improvements
 - Gustavo Cancelo, Brian Chase (FNAL)
- · Analysis of beam loss, optics modeling
 - Xiaowei Dong, John Carwardine (Argonne)
- 'Beta testing' of upgraded DAQ data archiver and tools
 - Michael Davidsaver (FNAL)

US collaborators have participated in all the studies shifts

ART DOE/NSF Review April 2009: Beam Tests at FLASH (Carwardine)

13

Preparing for August/September 9mA studies

ART DOE/NSF Review April 2009: Beam Tests at FLASH (Carwardine)

- Now to Aug 17:
 - Deliver beam to users + fel studies
 - No machine studies scheduled
- Aug 17-Sep 21: 5 weeks of dedicated machine time
 - Tunnel access to repair dump vacuum line (3 weeks)
 - Two weeks of 24/7 dedicated 9mA beam studies
- · Sept 21: FLASH shutdown begins

Important operational experience...

- So far, the main challenges have been operational issues
 - Controlling peak + integrated beam loss
 - LLRF system performance and tuning
- We need a better model of the bypass line optics
- A well-tuned and well-matched gun & injector is essential
- LLRF systems require expert attention when increasing beam current or pulse length
 - Tuning beam loading compensation
 - Reduce energy spread over long bunch trains: transients at start and end of pulse; slope over flat-top

ART DOE/NSF Review April 2009: Beam Tests at FLASH (Carwardine)

Slide 19

Preparatory work prior to August

- LLRF system upgrades at ACC456 (ACC23)
 - Upgrade hardware to latest generation (SimconDSP)
 - Upgrade rf signal down-converters for higher IF
 - Algorithm improvements: beam loading compensation, feed-forward waveform generation, ...
 - LLRF system modeling, study planning

- Optics work
 - Improve alignment between model and measured lattice
 - Improve understanding of loss points and apertures
 - Refine the bypass lattice

DESY

DESY

FNAL

KEK

Americas

US role FY09/Q3-Q4

- Main task is to prepare for 2 weeks of studies in September
- Participate in LLRF system characterization & upgrades
- Participate in planning / preparation of the studies
- Continue data analysis and optics simulations, co-develop studies plans for tuning for low beam loss
- Participate and lead LLRF and accelerator studies shifts

Looking ahead...

ART DOE/NSF Review April 2009: Beam Tests at FLASH (Carwardine)

FLASH long-range schedule

- Shutdown for FLASH upgrade: Sept 21 March 09
- Re-commission + machine & FEL studies: ~ 3months
- Restart operation for photon users: Summer 09
- User operation continues until end 2011
- Shutdown for FLASH-II upgrade: early 2012

Possible future studies at FLASH

- If the machine can be operated reliably with high beam power, then the 9mA program could continue.
 - Continue with the major 9mA program topic area
 - Add: priority 2 an 3 items not covered earlier
 - Add: new ILC-related studies, eg RTML studies
 - Add: studies of mutual interest to ILC and XFEL
- · Add studies of mutual interest with NML, Project-X, HINS,...
 - Opportunity to develop and test LLRF hardware, firmware, algorithms, operational issues,...

ART DOE/NSF Review April 2009: Beam Tests at FLASH (Carwardine)

Wrapping up...

ART DOE/NSF Review April 2009: Beam Tests at FLASH (Carwardine)

US Resources for 9mA program

- FY09 resources for LLRF (9mA study is one activity):
 - LLRF modeling & analysis at APS: 1 FTE
 - LLRF development at FNAL: 0.92 FTE
- Additional 9mA program support has come from
 - GDE project management office (Carwardine)
 - HLRF Technical Area Group (Adolphsen, Pei)
- The budget allows us to participate in machine studies, perform some data analysis, co-lead the program with N. Walker (DESY)
- LLRF resources are insufficient to make substantial technical

Summary

- TTF/FLASH is the only facility that can address the GDE goal of running beam through a cryomodule string by 2012
- A relatively small US team is making important contributions on HLRF/LLRF, machine physics studies/modeling, analysis of key operational data
- The team is gaining important experience in SCRF linac 'operation at the limits'
- Continued US participation with the 9mA program is important to the GDE global collaboration and it will benefit new and ongoing SCRF projects in the US

ART DOE/NSF Review April 2009: Beam Tests at FLASH (Carwardine)

Slide 29

Backups

Accelerating Modules

Six accelerating modules were installed into the TTF tunnel as a part of the FLASH Linac Each module has 8 superconducting cavities and RF power input couplers

position	module	type	assembled	coupler type	cold window	warm window
ACC1	2*		Jan. 2004	FNAL/TTF III	Conical/Cyl.	Planar/Cyl
ACC2	1*	Ш	Mar. 2000	FNAL/TTF II	Conical/Cyl.	Planar
ACC3	7		Dec. 2006	TTF III	Cylindrical	Cylindrical
ACC4	4		Jul. 2001	TTF II	Cylindrical	Plane, WG
ACC5	5	III	Jun. 2007	TTF III	Cylindrical	Cylindrical
ACC6	6		May. 2006	TTF III	Cylindrical	Cylindrical

