

Overview of the RPC DHCAL Project

José Repond Argonne National Laboratory

CALICE Collaboration Meeting University of Texas at Arlington March 10 – 12, 2010

RPC DHCAL Collaboration

<u>Argonne</u>

Carol Adams Mike Anthony Tim Cundiff Eddie Davis Pat De Lurgio **Gary Drake Kurt Francis Robert Furst Vic Guarino Bill Haberichter Andrew Kreps** Zeljko Matijas José Repond **Jim Schlereth** Frank Skrzecz (Jacob Smith) (Daniel Trojand) **Dave Underwood** Ken Wood

Lei Xia Allen Zhao

<u>Boston University</u>

John Butler Eric Hazen Shouxiang Wu

<u>Fermilab</u>

Alan Baumbaugh Lou Dal Monte Jim Hoff Scott Holm Ray Yarema

IHEP Beijing

Qingmin Zhang

University of lowa

Burak Bilki Edwin Norbeck David Northacker Yasar Onel

RED = Electronics Contributions GREEN = Mechanical Contributions BLUE = Students BLACK = Physicist

‡ Fermilab

McGill University

François Corriveau

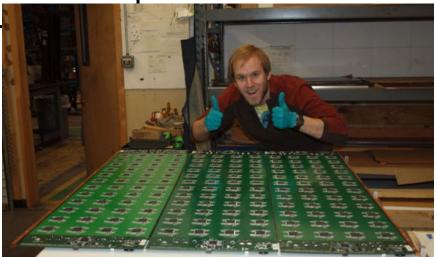
Daniel Trojand

UTA

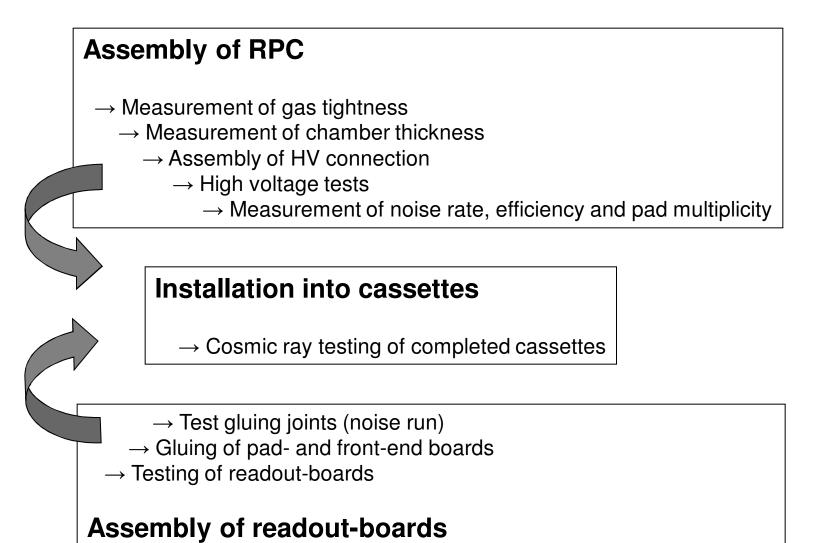
Jacob Smith

Jaehoon Yu

Institute of High Energy Physics Chinese Academy of Sciences



Current status

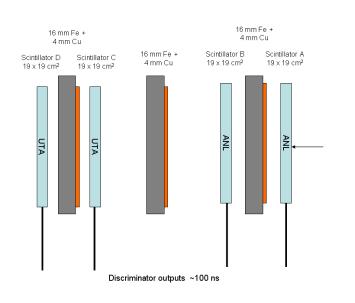

R&D phase	Refereed papers	Status
Initial RPC studies with analog readout	1 Nucl. Instr. Meth.	Completed
Vertical slice test with digital readout	5 JINST (last paper published on February 24, 2010)	Completed
Physics prototype	-	Ongoing
Technical prototype R&D	-	Nothing much yet

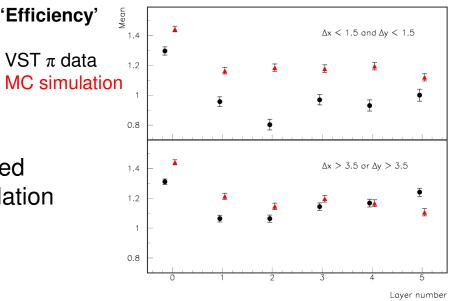
Physics prototype construction status

Task	Status	Comment
RPC construction	30% done Much more tedious the anticipated	
Cassette construction	Design completeCostly, but not very la1st prototype assembledintensiveMaterial on orderintensive	
Front-end electronics	Prototypes fully debuggedPursued a very co approachBoards in fabricationapproach	
Back-end electronics	DCOL 100% done New TTM in fabrication	
Low voltage	Power supplies in hand 1 st distribution box assembled and tested Parts for all units on order	
High voltage	Units in hand Computer controlled program completed	
Gas system	Gas mixer completed and tested Decision to built 2 nd distribution rack Parts on order	
DAQ software	Implemented into CALICE framework 99% complete	
Event builder and display	Event building started Event display complete	
Data analysis	Started to reconstruct tracks in CR data	Lots of experience from VST
Simulation	RPC response simulated Implementation of DHCAL into MOKKA ongoing	

Construction steps and quality assurance

Physics prototype plans


Task	Dates	Comments
Construction	Complete by June 30 th	Should not slip much more
Cosmic ray testing of cubic meter	April through August	
Installation into Mtest	Early September	
1 st data taking period	September - October	DHCAL standalone (with TCMT)
2 nd data taking period	December	Combined with ECAL
3 rd data taking period	Early in 2011	DHCAL standalone or combined
Disassembly and shipping of stage	March 2011	Hard deadline


Rate considerations

VST: rate limitations observed effect <u>not</u> compatible with low charged particle intensities and shower simulation

Dedicated measurements at MTBF

4 scintillation counters, absorbers and scalers

No indication of photons at p = 8 and 16 GeV/c Convincing evidence of photons at 1, 2, and 4 GeV/c with $\mathbf{R} = \mathbf{N}_{\gamma}/\mathbf{N}_{charged} \sim 33, 26, 12 \%$ With Pb converter inserted, the rate of photons decrease to $\mathbf{R} = \mathbf{N}_{\gamma}/\mathbf{N}_{charged} \sim 11, 13, 5 \%$

Simulations needed (not sure will find time to do)

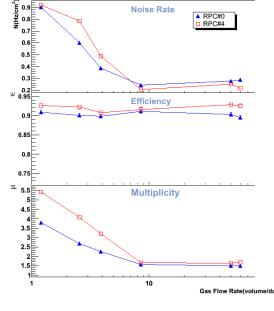
R&D beyond the physics prototype

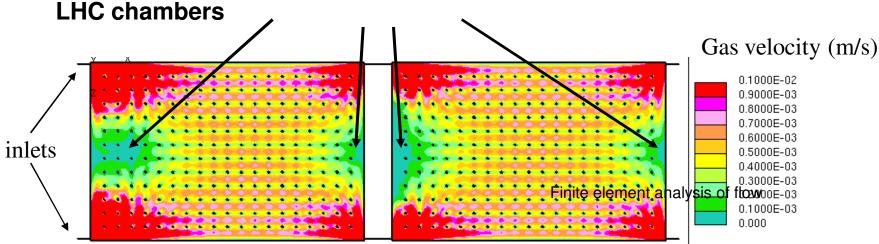
1-glass RPCs

Will built a few prototypes with current electronics

Next version of DCAL chip

Complete redesign envisaged Explore recent developments of ultra-low power consumption circuitry Most likely will not pursue power pulsing (low efficiency for cosmic rays)


High/low voltage supply and distribution

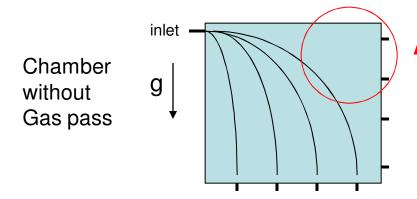

Nothing concrete yet

Gas flow/recycling ...

Gas flow

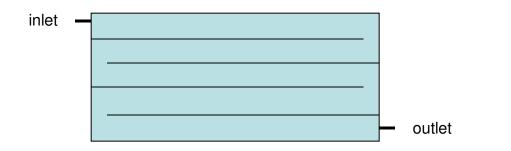
Gas flow needed to purge toxins created in avalanches Diffusion of gas in general a poor approach Flow needs to be adjusted to rate of avalanches Required overall flow defined by region of chamber with lowest flow

RPC2010 workshop: R.Guida


"This can lead to a local accumulation of impurities, affecting the overall RPC performance. We are studying realistic ways to optimize the flow gas distribution."

This is not the only problem...

The gases in our standard mixture are heavy


The flow of gases will be different in a horizontal and a vertical chamber

	UNIT	R134a (C ₂ H ₂ F ₄)	ISOBUTANE (C ₄ H ₁₀)	SULPHUR HEXA FLUORIDE(SF ₆)	AIR
GAS DENSITY	kg/m³	4.25	2.82	6.27	1.205

Accumulation of lighter toxins

We have solved this problem a long time ago!!!!!

Use fishing lines both as spacers and as chicane for the gas

Gas recycling

Our preferred gas

Gas	Fraction [%]	Global warming potential (100 years, $CO_2 = 1$)	Fraction * GWP
Freon R134a	94.5	1430	1351
Isobutan	5.0	3	0.15
SF ₆	0.5	22,800	114

Physics prototype

Gas volume ~ 40 liters Need approximately 10 volume changes/day \rightarrow 400 liters/day Testbeam: Operate for say 4 months \rightarrow 48,000 liters of mixed gas Corresponds to 45,000 liters or 190 kg of Freon R134a which corresponds to 275 tons of CO₂ 275 tons of CO₂ are emitted from 30,000 gallons of gasoline Assuming 25 mpg, our emmission corresponds to driving your average car 30 times around the globe

This is not good, but also not disastrous

ILC detector type hadron calorimeter

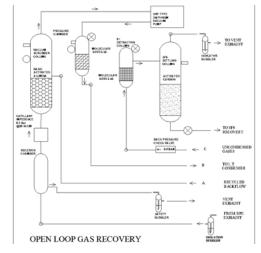
Gas volume \rightarrow x 100 Data taking: Operate for say 3 years \rightarrow x 10 Our emmission will correspond to driving 25,000 cars around the globe

Obviously we need recycling, also to contain the cost

Two approaches to recycling

Closed circuitry adopted by LHC community Open circuitry investigated by INO (Indian Neutrino Observatory)

Closed circuitry


Capture the gas, filter out toxins, and reuse Currently not succesful, due to additional contaminants introduced by filters

Open circuitry

Freeze out Freon, Isobutan and SF_6 using different condensation temperatures, remix and use Complicated system!!!!

Currently problems with plumbing (air in the system)

We have established some contact and hope to be able to collaborate in the future

Last comment...

Order for the HARDROC2b chip has been placed

 \rightarrow A 2nd cubic meter DHCAL with RPCs will be built

The Silicon ECAL is lacking funding/manpower

- \rightarrow Slow progress on solving guard ring problem
- \rightarrow No funds for combined tests with RPC DHCAL at FNAL

We will have **2 (two!) RPC – DHCAL** cubic meter prototypes (right, there are differences, but they are not overwhelmingly significant)

Inadequate effort in solving technical issues for RPC based DHCAL

Despite effort on being compatible with DAQ, there will be no combined testing at FNAL

We are **falling behind** in developing a Silicon ECAL

