

laboratoire systèmes et matériaux pour la mécatronique

Optimization of the final focus stabilization for CLIC

G. Balik , B. Caron, L. Brunetti (LAViSta Team)

LAPP-IN2P3-CNRS, Université de Savoie, Annecy, France

&

SYMME-POLYTECH Annecy-Chambéry, Université de Savoie, Annecy, France

The 21st October 2010

Final focus stabilization

Typical ground motion measured at CMS

Beam trajectory control limited by the repetition rate of the beam

Ground motion integrated RMS already between a few nm to dozens of nm at 5 Hz

Mechanical scheme and control point of view

Feedback scheme

Controller optimized to minimize the PSD of displacement of the beam (Δ Y) in function of the disturbance *seismic motion*

The results of the optimization depend on the considered seismic motion and on the active passive isolation.

Efficiency of the feedback scheme: 0 Hz to [4 – 5]Hz

(limited by the repetition rate of the beam: 50Hz)

It is needed to improve the efficiency of the control

Feedback + Adaptive scheme

Adaptive filter reconstruct and cancel the disturbance
Efficiency of the control greatly increased (in the same range: 0 Hz to [4 – 5]Hz)

- Beam motion still at a detrimental level at 5Hz
- Specification of the future active/passive isolation

Pattern of a global active/passive isolation

Gaël Balik - LAPP

IWLC 2010 - CERN - 2010-10-21

Feasibility demonstration with industrial products

Results

-

Robustness (Mechanical support)

Integrated RMS displacement = $f(\xi, f0)$

• Controller optimized for the PSD of $K_{2}(s) = \frac{1}{1 + \frac{2\xi}{\omega_{0}}s + \frac{1}{\omega_{0}^{2}}s^{2}}$ ξ= 0.01 the ground motion filtered by the $f_0 = 2 Hz$ TMC table + Mechanical support K_2 Integrated RMS [m] x 10⁻¹⁰ $f_0 = f_0 \pm 10\%$ $\xi = \xi \pm 50\%$ 0.9 0.8 x 10 0.7 0.6 • The worst case: 0.5 $f_0 = 2.2 \text{ Hz}$ 0.4 $\xi = 0.005$ 0.3 0.2 0.1 0. 0.005 Integrated RMS displacement of the beam 0.1nm @ 0.1Hz 0.01 2.5 2.4 2.3 Damping 2.2 2.1 2 <u></u>1.9 **1.8** 0.015 . 1.7 1.6 ratio: ξ[] Resonant frequency: f₀ [Hz]

Robustness (BPM noise)

Integrated RMS displacement = f(W)

Example with the solution being developed at LAPP

(A. Badel, J-P. Baud, R. Le Breton, G. Deleglise, A. Jérémie, J. Lottin, L. Pacquet)

Conclusions

Feedback + Adaptive control:

- Feasibility demonstration of the beam stabilization proposed
- New specification of the active/passive isolation

• Future prospects :

• Implementation of the controller under placet

