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2./ Main concern: Vacuum
discharges in CLIC

® Why to study vacuum discharges?

1. Going to the Ilimits of conventional acceleration
techniques — highest possible gradient

2. Estimated power consumption: 415 MW (LHC: 120 MW)
— cost reduction by efficiency optimisation

* Knowing how to lower breakdown rate is a key issue in
points (1) and (2)

Detail of a CLIC accelerating structure,
working at 100 MV/m
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Breakdown studies have a broad
application spectrum

7k
= Fusion physics | %7;; \\1 K/ ‘q
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= Satellite systems . e

* Industry

" Linear collider designs
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®. Issues about breakdown

HEL
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0
PHYSICS

Aim: Predict already in the design phase what breakdown
behaviour a structure will have! Why this is not trivial:

" breakdown rate (BDR)
* How to prevent breakdowns? = How are they triggered?
" Better BDR to predict structure behaviour

* Statistical or deterministic, independent events or “memory”?
* Influence of material properties, surface treatments?

- measurements — benchmark against theory;
why this is not easy:
* Involves many areas of physics

* Different phenomena are interacting in a complicated way,
involving time scales ~fs — h and length scales ~nm —m

* Non-linear evolution of processes
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Breakdown Experiments
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Breakdowns in RF cavities
— and how to diagnhose them

®" Breakdown waveform
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- Some open questions...

" What is the physics
behind conditioning?
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" How does

w.r.t.

scale and why?

T18 summary, 230ns pulse length

CLIC goal

1
105 110 115

unloaded gradient [MV/m]

IWLC 2010

Oct. 21st, 2010 8



2. Modelling DC discharges

0
YSICS

" First we have to Limited energy
understand breakdowns in ~ from the circuit
DC, before we can 0, ML-T—%—Q%—
generalise to RF & Ve

® Simple and cost-efficient . |

testing of breakdown ‘ =

o . Rext = BOQ
behaviour with two DC C.. =0.1-27.5nF

setups at CERN ey
* We adjusted also out
theoretical model to the DC r=1mm

experimental conditions

= How do we know, whether g4-20
and how results are Hm
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Connection between DC and RF?

® Connection indicated both by theory and experiments; but

how to relate them? S
Optical spectro-

) scopy, RF
BDR vs gradient in DC and RF: e
Despite all differences in the experimental :

setup, slopes are almost the same
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Conditioning and
ranking of materials

between them?
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" Also in DC, materials
exhibit conditioning,
although differently
as in RF. Connection
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An evolving field enhancement?

" Does repeated application of the field modity the surface?

(a) 200 MV/m (b) 225 MV/m
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)Multi-scale Model of
Breakdowns
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Electrical breakdown in
multi-scale modeling approach

Kai Nordlund, Flyura Djurabekova

il

Avaz Ruzibaev ( Stage 1: Charge distribution at the surface | ~few fs
Method: DFT with external electric field

Stage 2: Atomic motion & evaporation ;
Flyura Joule heating (electron dynamics)
Djurabekova | rotp0d: Hybrid ED&MD model (includes

. Laplace and heat equation solutions)

~few ns

~ sec/min Aarne Pohjonen Stefan Parviainen ~ sec/hours

~Amwn =20 >0NX>rr

S

Dislocation mechanism due to the given charge distribution
Method: MD, analysis of dislocations . Method: Kinetic Monte Carlo

N\ va

Helga Timké ( Stage 4: Plasma evolution, burning of arc ] ~10s ns

(Stage 3a: Onset of tip growth; (Stage 3b: Evolution of surface morphology

Method: Particle-in-Cell (PIC)

4

Juha Samela | Stage 5: Surface damage due to the intense
ion bombardment from plasma ~100s ns
Method: Arc MD IWLC 2010 Oct. 21st, 2010 14
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0 Stage 1: DFT Method for charge

TITUTE OF
PHYSICS

distribution in Cu crystal

" Writing the total energy as a functional of the electron
density we can obtain the ground state energy by
minimizing it.

= This information will give us the properties of Cu surface
* Total energy, charge states (as defect energy levels)

" The calculations are done by (Spanish initiative
for electronic structure with thousands of atom)

® The code allows for including an external electric field

® The surface charges under the field are analyzed using
the Mulliken and Bader charge analysis
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Stage 2: Hybrid ED&MD - Partial
surface charge induced by an
external electric field

Standard MD solving .
Newton’s egs. Laplace solution

" Gauss’ law — charge of
surface atoms ¢ = &

" Laplace eq. - local field

= Motion of surface atoms
corrected; pulling effect
¢p=const of the field

(conductive material)

oy .
AESEE S

Verlflcatlon of the charge assessment

" Model is submitted for publication
time 0.014 ps
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F. Djurabekova, S. Parviainen, A. N — & Ymioey Sk

Pohjonen, K. Nordlund, “Atomistic
modelling of metal surfaces under
electric fields: direct coupling of electric
fields to a molecular  dynamics

algorithm” Py 0.0 05 10
z (arb.u.)

Helga Timko [DFT] results from T. Ono et al. Surf.Sci., 577,2005, 42
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'Short tip on Cu (100) surface
at the electric field 10 V nm-1

(Temperature 500 K)

time 0.0041 p
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Stage 2: Dynamics of electrons
for temperature account

" At such high electric fields, field emission fimed 0 cruces

* 0.0e+00-
* 8.1e-05-

is a non-negligible phenomenon
" Electrons escaping from the surface with
significant current will heat the sharp

features on the surface, causing eventually
their melting.

" The change of temperature (kinetic energy)
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Results are submitted to Comput. Mater. Sci., § o0
S. Parviainen, F. Djurabekova, H. Timko, and K. Nordlund, = & e
“Implementation of electronic processes into MD simulations of o
nanoscale metal tips under electric fields 200 |
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STRESS

A=80E2/Y
" Presence of an electric field
exerts a on the -
surface . .
" Presence of a near-to-surface | i -

i
3%
i

el

:‘;‘ss

void may trigger the growth of
a protrusion

e

s
Et

R

e S Ea e vannsan
1 Sessasa

%
e

t

X
L R I T T Y A Y
A L T T,

Al
Srans
oo
X

Submitted to PRB: Rapid Commun.,
A. S. Pohjonen, F. Djurabekova, A. Kuronen, and K. Nordlund, “Dislocation
nucleation from near surface void under static tensile stress in Cu”
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Corresponding to experiment...

Stage 4: Plasma v o |
- € Sk
evolution ?@ O o
20um R

1d3v electrostatic PIC-MCC code; included phenomena:

Start from
these ® Cu evaporation, e- field emission (Fowler-Nordheim eq)
. 6E, o0 - bl )
Jee =8N —— 7 =, whereE, =/E
FE FN ¢t(y)2 I

3

t(y) =1, v(y) =0.956-1.062y* where y= T ELOCZ
Are P

Createions | = Collisions, esp. ionisation collisions

More e and = | ™ Sputtering of Cu neutrals at the wall, enhanced MD yield
Cu " Secondary electron yield due to ion bombardment

Accepted for publication in Contrib. Plasma Phys.,
H. Timko, K. Matyash, R. Schneider, F. Djurabekova, K. Nordlund, A. Hansen, A.
Descoeudres, J. Kovermann, A. Grudiev, W. Wuensch, S. Calatroni, and M. Taborelli,

“A One-Dimensional Particle-in-Cell Model of Plasma Build-up in Vacuum Arcs”
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Plasma build-up

" If not regulated externally, densities grow steadily
* Only limiting factor: Energy available

® During onset, the plasma does not thermalize, is far from

MB distribution (fluid approach not possible)

Electron, Neutral and lon Densities in the Arc Plasma Ell%ctrical Potential Building up in the Arc Plasma
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2. Under what conditions will an arc
form?

Two conditions need to be fulfilled:

" High enough initial local field to have growing FE current
" Reaching a critical neutral density — ionisation avalanche

" The sequence of events leading to plasma formation:

17 \ High electric field ]

| - Electron emission, neutral evaporation ]

\ Ionisation = e-, Cu and Cu* densities build up 1

|—> \ Sputtering neutrals [ 4T

. L < lsys — corresponding to a critical neutral
density ~ 10® 1/cm?® in our case = ionisation avalanche




X (-580 - 580) y (-50 - 500) Z (-580 - 580)

Stage 5: Cathode damage
due to ion bombardment

" Knowing of incident ions,
erosion and sputtering was simulated with MD

* Flux of ~10® cm™s? on e.g. r=15 nm circle = 1 ion/20 fs

time 6 ps time 10 ps. __time18ps ., time 128 ps
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H. Timko, F. Djurabekova, K. Nordlund, L. Costelle, K. Matyash, R. Schneider, A.
Toerklep, G. Arnau-Izquierdo, A. Descoeudres, S. Calatroni, M. Taborelli,, and W.

Wuensch, “Mechanism of surface modification in the plasma-surface interaction in electrical
arcs”, Phys. Rev. B 81, 184109 (2010)
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" Mechanism of
surface modification

DC arc plasma damage in Cu, 200 ions, on r = 15 nm spot

time 0.0041 ps

-50 - 750) z (-600 - 600 Helga Timké (2009)



Comparison to experiment

" Self-similarity:

remains constant over several
orders of magnitude, and is
the same for experiment and
simulation

0.1

— 0.0 p--

£

S

S -0.1

D

=

)

8 02 )\

5 — Expt. 1x0.2 7T

N — Expt. 2 \
03 b Expt. 3 "‘,

-==:8im. 1, plasma ionsx 40
==-=:8im. 2, plasma ionsx 30
e Sim.IS, therrpal heat'jng;!><40I

1 L L
20 -15 10 -05 00 05 10 15 20
X-coordinate [1:m]

Helga Timko IWLC 2010 Oct. 21st, 2010 25



Distance r from axis [um]

New 2D Arc-PIC code

10 15

Distance z from cathode [pm]

Species

—Cut

Time

" We have established a

and understood many
bits and pieces of the puzzle
already

= Still many open questions remain.
To answer them, we need a close
interaction between theory and
experiment

" Future of DC experiments: To
test more basic physics

" Multi-scale model: Give
predictions to their outcome
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