

A Review on CLIC Breakdown Studies

<u>Helga Timkó</u>, Flyura Djurabekova, Kai Nordlund, Stefan Parviainen, Aarne Pohjonen, Avaz Ruzibaev, Juha Samela,

Sergio Calatroni, Rocío Santiago Kern, Jan Kovermann, Walter Wuensch,

Helsinki Institute of Physics and CERN

In collaboration with the Max-Planck Institut für Plasmaphysik

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Helga Timkó

IWLC 2010 Oct. 21st, 2010

CERN European Organization for Nuclear Research

Outline

Why to model vacuum discharges? Compact Linear Collider and others

Experiments at CERN RF and DC breakdowns

Theory: A multiscale model

- Tip growth Plasma formation
 - Surface damage

2

- Why to study vacuum discharges?
- 1. Going to the limits of conventional acceleration techniques \rightarrow *highest possible gradient*
- 2. Estimated power consumption: **415** MW (LHC: 120 MW) → *cost reduction by efficiency optimisation*
- Knowing how to lower breakdown rate is a key issue in points (1) and (2)

Detail of a CLIC accelerating structure, working at 100 MV/m

Helga Timkó

Breakdown studies have a broad application spectrum

- Fusion physics
- Satellite systems
- Industry
- Linear collider designs

4

Issues about breakdown

Aim: Predict already in the design phase what breakdown behaviour a structure will have! *Why this is not trivial:*

- Lowering breakdown rate (BDR)
 - How to prevent breakdowns? = How are they triggered?
- Better understanding BDR to predict structure behaviour
 - Statistical or deterministic, independent events or "memory"?
 - Influence of material properties, surface treatments?
- Interpreting measurements benchmark against theory; why this is not easy:
 - Involves many areas of physics
 - Different phenomena are interacting in a complicated way, involving time scales ~fs – h and length scales ~nm – m
 - Non-linear evolution of processes

Breakdown Experiments

Breakdowns in RF cavities – and how to diagnose them

HELSINKI INSTITUTE OF PHYSICS

What is the physics behind conditioning? How does BDR w.r.t. gradient scale and why?

Modelling DC discharges

- First we have to understand breakdowns in DC, before we can generalise to RF
- Simple and cost-efficient testing of breakdown behaviour with two DC setups at CERN
 - We adjusted also out theoretical model to the DC experimental conditions
- How do we know, whether d=20 and how results are valid in RF?

Oct. 21st, 2010

Connection indicated both by theory and experiments; but how to relate them?
Optical spectra-

BDR vs gradient in DC and RF:

Despite all differences in the experimental setup, slopes are almost the same

Conditioning and ranking of materials

Determined by

lattice structure?

 Ranking of materials according to their breakdown field reached after

Does repeated application of the field modify the surface?

Multi-scale Model of Breakdowns

Stage 1: DFT Method for charge distribution in Cu crystal

- Writing the total energy as a functional of the electron density we can obtain the ground state energy by minimizing it.
- This information will give us the properties of Cu surface
 - Total energy, charge states (as defect energy levels)
- The calculations are done by SIESTA (Spanish initiative for electronic structure with thousands of atom)
- The code allows for including an external electric field
- The surface charges under the field are analyzed using the Mulliken and Bader charge analysis

Stage 2: Hybrid ED&MD – Partial surface charge induced by an external electric field

Laplace solver

(conductive material)

- Standard MD solving Newton's eqs.
- Gauss' law \rightarrow charge of surface atoms $\sigma = \varepsilon_0 F_{loc}$
- Laplace eq. \rightarrow local field
- ⇒ Motion of surface atoms corrected; pulling effect of the field

Model is submitted for publication in PRE

F. Djurabekova, S. Parviainen, A. Pohjonen, K. Nordlund, "Atomistic modelling of metal surfaces under electric fields: direct coupling of electric fields to a molecular dynamics algorithm"

Verification of the charge assessment

Helga Timkó

Short tip on Cu (100) surface at the electric field 10 V nm⁻¹ (Temperature 500 K)

Stage 2: Dynamics of electrons for temperature account

- At such high electric fields, field emission is a non-negligible phenomenon
- Electrons escaping from the surface with significant current will heat the sharp features on the surface, causing eventually their melting.
- The change of temperature (kinetic energy) due to Joule heating and heat conduction is calculated by the 1D heat equation

$$\frac{\partial T(x,t)}{\partial t} = \frac{K}{C_V} \frac{\partial^2 T(x,t)}{\partial x^2} + \frac{\rho(T(x,t))J^2}{C_V}$$

Results are submitted to **Comput. Mater. Sci.**, S. Parviainen, F. Djurabekova, H. Timko, and K. Nordlund, *"Implementation of electronic processes into MD simulations of nanoscale metal tips under electric fields "* Helga Timkó

Presence of a near-to-surface void may trigger the growth of a protrusion

Force A A A A A A 3.33 3.3

 $(-70 - 70) \ y \ (30 - 50) \ z \ (-5 - 5) \ z \$

Submitted to PRB: Rapid Commun.,

A. S. Pohjonen, F. Djurabekova, A. Kuronen, and K. Nordlund, "Dislocation nucleation from near surface void under static tensile stress in Cu"

Accepted for publication in **Contrib. Plasma Phys.**, H. Timko, K. Matyash, R. Schneider, F. Djurabekova, K. Nordlund, A. Hansen, A. Descoeudres, J. Kovermann, A. Grudiev, W. Wuensch, S. Calatroni, and M. Taborelli , *"A One-Dimensional Particle-in-Cell Model of Plasma Build-up in Vacuum Arcs"*

IWLC 2010

- If not regulated externally, densities grow steadily
 - Only limiting factor: Energy available
- During onset, the plasma does not thermalize, is far from MB distribution (fluid approach not possible)

Two conditions need to be fulfilled: (\rightarrow scaling btw. DC and RF)

- High enough <u>initial local field</u> to have growing FE current
- Reaching a **critical neutral density** → ionisation avalanche
- The sequence of events leading to plasma formation:

"Point of no return": l_{mfp} < l_{sys} – corresponding to a critical neutral density ~ 10¹⁸ 1/cm³ in our case ⇒ ionisation avalanche

- **Stage 5: Cathode damage** due to ion bombardment
- Knowing flux & energy distribution of incident ions, erosion and sputtering was simulated with MD
- Flux of ~ 10^{25} cm⁻²s⁻¹ on e.g. r=15 nm circle \Rightarrow 1 ion/20 fs

H. Timko, F. Djurabekova, K. Nordlund, L. Costelle, K. Matyash, R. Schneider, A. Toerklep, G. Arnau-Izquierdo, A. Descoeudres, S. Calatroni, M. Taborelli, and W. Wuensch, "Mechanism of surface modification in the plasma-surface interaction in electrical arcs", Phys. Rev. B 81, 184109 (2010)

Mechanism of surface modification

Comparison to experiment

Self-similarity:

Crater depth to width ratio remains constant over several orders of magnitude, and is the same for experiment and simulation

Summary and Outlook

New 2D Arc-PIC code

- We have established a ranking of materials and understood many bits and pieces of the puzzle already
- Still many open questions remain. To answer them, we need a close interaction between *theory and experiment*
 - Future of DC experiments: To test more basic physics
 - Multi-scale model: Give predictions to their outcome

Interested? Come to our Breakdown workshop '*MeVArc*' June 27-30th, 2011 in Helsinki!

Thank you!

