A Study of $e^+e^- \rightarrow H^0A^0 \rightarrow bbbb$ at 3 TeV at CLIC

Marco Battaglia

UCSC, Lawrence Berkeley National Laboratory and CERN

(with contributions by P. Ferrari)

Heavy Neutral Higgs Bosons in DM-motivated SUSY

Consider two benchmark scenarios with $M_A \sim 1$ TeV to study H and A mass reconstruction at 3 TeV CLIC:

Scenario 1) (S Martin, CLIC Study Group)

MSSM model with non-unified gaugino masses

 M_1 =780 GeV, M_2 =940 GeV, M_3 =540 GeV m_0 = 303 GeV, A_0 = -750 GeV, $\tan \beta$ = 24, μ >0

 $M_{A} = 902.6 \text{ GeV } M_{H} = 902.4 \text{ GeV}$

Scenario 2) (Point K' of MB et al, Eur. Phys. J. C33 (2004))

cMSSM model

m1/2=1300 GeV, $m_0 = 1001$ GeV, $A_0 = 0$, $\tan \beta = 46$, $\mu < 0$

 $M_A = 1139.2 \text{ GeV } M_H = 1143.8 \text{ GeV}$

Heavy Neutral Higgs Bosons in DM-motivated SUSY

Study M_A performing scans in M_1 , M_2 , M_3 , $(m_{1/2})$, m_0 , A_0 , tan β , sign μ around the parameters of the two benchmark scenarios and retaining solutions compatible with WMAP 7-years $\Omega_{CDM}h^2$, BR(b \rightarrow s γ) with MicroMEGAS 2.2 + SuSPECT 2:

Production Cross Section

Event Generation, Simulation and Reconstruction

Signal generation with PYTHIA 6.215+ISASUGRA 7.67, Backgrounds with PYTHIA+ISASUGRA and CompHEP+PYTHIA;

Full simulation with MOKKA using CLIC_ILD detector model; reconstruction using Marlin v01-09 + port to Marlin of DELPHI PUFITC kinematic fitter, FASTJet jet clustering and b-tagging based on ZVTOP vars;

Signal Event Selection

Pair production of heavy objects decaying into 4 b jets gives signal very distinctive signature ensuring good S/B after selection with moderate efficiency

Signal Event Selection: b Tagging

b-tagging based on topological vertex reconstruction with ZVTOP-ZVRES in LCFI package;

TeV b-jets requires some special care due to long decay length of B hadrons (30% flying past first VXD layer), optimise for high efficiency by performing secondary particle search in jets with no reco secondary vertices;

B-tag probability computed per jet using boosted decision tree strategy in TMVA package and then combined for di-jets and event.

Signal Event Selection

Higgs Mass Reconstruction: Kinematic Fit

Apply kinematic fit, accomodating beamstrahlung, to improve di-jet mass resolution (finite detector resolution, particle flow confusion, jet clustering confusion and s.l. B decays (+17% $\delta E_{iet}/E_{iet}$));

Model mass as convolution of BW (natural width) and Gaussian (detector resolution), after kinematic fit Gaussian resolution improves by ~35% and accuracy on fitted mass by ~30%.

Scenario 1) 2-par Fit to Signal Only $M_A = (909.2 + /-2.9 \text{ (stat)}) \text{ GeV}$

Scenario 2) 2-par Fit to Signal Only $M_A = (1142.1 + /-4.3 \text{ (stat)}) \text{ GeV}$

Higgs Mass Reconstruction (3 TeV, 2 ab⁻¹)

Higgs Mass Reconstruction $\gamma\gamma \rightarrow$ hadron Background

Standard approach to force event into 4 jets fails in presence of $gg \rightarrow hadron$ background since background particles are added to b jet particles degarding the energy and angular resolution;

More appropriate to use a cone-like algorithm selecting only four most energetic jets for Higgs reconstruction;

Adopted anti-kt algorithm in cylindrical coordinates in FastJet package, now implemented as Marlin processor;

Find R values for which event has 4 jets each with energy exceeding 150 GeV, use these jet for Higgs reconstruction and disregard lower energy jets mostly Containing background particles;

Higgs Mass Reconstruction $\gamma\gamma \rightarrow$ hadron Background

CLIC beams and bunch structure make impact of $\gamma\gamma \rightarrow$ hadron background on physics reconstruction non negligeable;

Use of a semi-inclusive jet clustering allows us to mitigate the impact of this background on the width of the di-jet invariant mass.

Kinematic fit also helps in reducing the contribution of these hadrons to the jet energy.

Nb of BX of overlayed $\gamma\gamma$	Kinematic Fit $\sigma_{M_{ij}}$ (GeV)	
	4-jet	semi-incl.
0	27.7 ± 4.8	29.8 ± 4.7
5	32.0 ± 5.0	30.1 ± 5.0
20	54.0 ± 8.3	$34.5 {\pm} 6.7$
40	72.2 ± 7.4	$45.4 {\pm} 5.6$
60	78.6 ± 10.9	52.5 ± 8.2

Higgs Mass Reconstruction $\gamma\gamma \rightarrow$ hadron Background

Nb of overlayed BXs	4 -jet $\Delta \sigma_{\text{stat}} / \sigma_{\text{sta}}$	semi-incl $\Delta\sigma_{ m stat}/\sigma_{ m stat}$
0	0	0
5	+0.15	+0.10
20	+1.10	+0.60
40	+1.49	+1.10
60	+1.93	+1.53

Conclusions

Mass (and width) determination of SUSY heavy Higgs bosons an important part of the possible physics program of a multi-TeV collider;

 $H0A0 \rightarrow bbbb$ represent a compelling benchmark for detector studies with energetic jets, highly efficient b tagging, possibility of constraints to mitigate beamstrahlung effects and jet clustering robust against $\gamma\gamma \rightarrow badron$ accelerator induced background.