Particle Flow Calorimetry for a High Energy Lepton Collider

Mark Thomson University of Cambridge

This Talk

Four Main Topics:

- Particle Flow jet energy reconstruction: 45 GeV 1.5 TeV
- Understanding Particle Flow at High Energy
- Di-Jet Mass reconstruction
- Particle Flow and timing at CLIC

<u>Preliminaries:</u> All studies use latest version of PandoraPFA i.e. the complete rewrite (see John Marshall's talk) ILD results refer to ILD00 model (Lol version) For high energy studies use CLIC_ILD model 8 interaction length W HCAL 4 Tesla field otherwise very similar to ILD

★ <u>A few words about PandoraPFA</u>

- Basic reconstruction strategy:
 - clustering
 - topological association
 - reclustering
 - tidying up (fragment removal)

- Particle flow reconstruction works well (NIMA 611, 25-40, 2009)
 - jet energy resolution dominated by HCAL energy resolution

- ★ At some point, in high density jets (high energies) reach the limit of "pure" particle flow
 - i.e. can't cleanly resolve neutral hadron in a hadronic shower
- ★ If track momentum and cluster energy inconsistent : **RECLUSTER**

NOTE:

- clustering "guided" by track momentum
- much more powerful than subtraction (Energy Flow) <u>New Implementation:</u>
 - greatly rationalized fewer, but better defined, steps
 - improved treatment when reclustering "fails": the way a a cluster is constructed with just the right energy

1) Performance

Reconstructed energy / GeV

Jet Energy Resolution better than 3.6 % over whole range

★ Interesting to look at confusion matrix

• fractions of jet energy reconstructed in different classes of PFO

e.g. 45 GeV	h+	γ	h ⁰	
Reco as h+	57 .7%	0.6 %	0.7 %	
Reco as γ	0.6 %	25.5 %	1.5 %	
Reco as h ⁰	2.1 %	1.6 %	10.7 %	

★ Interpretation

- diagonal is well reconstructed
- "pink" cells represent charged/neutral confusion

Here total confusion = 4

Can also look at what fraction of the PFO energy is "perfectly reconstructed"
 defined by total energy in PFOs with >90% from correct class

"Pure Fraction" = 93 %

Confusion Matrix

250 GeV	h+	γ	h ⁰	"Pure Fraction" =
Reco as h ⁺	55 .3%	2.2 %	3.0 %	76 %
Reco as γ	1.0 %	22.5 %	2.1 %	
Reco as h ⁰	3.3 %	1.7 %	8.8 %	Confusion still modest !

500 GeV	h+	γ	h ⁰	60 %
Reco as h+	50 .6%	4.6 %	4.5 %	
Reco as γ	1.3 %	19.6 %	2.5 %	
Reco as h ⁰	6.9 %	2.1 %	7.8 %	

1 TeV	h+	γ	h ⁰	40 % Confusion significant,
Reco as h ⁺	40.8 %	7.6 %	6.9 %	but 40 % of PFOs still "perfect"
Reco as y	1.9 %	15.6 %	2.4 %	
Reco as h ⁰	11.7 %	2.6 %	10.3 %	of lost photons
			K	"neutral hadron" fraction Increased – tracking ?

Confusion vs Energy

★ Main points:

- confusion rises fairly rapidly with energy at 1 TeV almost 30 %
- two types of confusion highly correlated, i.e. "charged fragments" balanced by "lost" photons/neutral hadrons
- Strong correlation due to reclustering transition from Pflow to Eflow
- For very high energy jets: energy flow regime

★On-shell W/Z decay topology depends on energy:

- Impact of fragments, i.e. fake neutral hadrons, on mass reconstruction different is not the same as that for energy reconstruction
- ★ Can show that impact of a false energy deposit of energy ∆ is:

$$\frac{\sigma_E}{E} \propto \frac{\Delta}{E} \qquad \frac{\sigma_m}{m} \propto \frac{\Delta}{m}$$

 $\frac{\mathbf{O}_m}{m} \propto \frac{E}{m} \frac{\mathbf{O}_E}{E}$

★ For high energy jets, neutral fragments have disproportionate effect on mass

Investigate effect of cuts on minimum neutral hadron PFO energy

 Optimal cut represents a compromise between jet energy resolution and suppression of fake "mass generating" effects

Old Mass Resolution

CLIC 09 version

- Old Pandora
- No neutral cuts

New Mass Resolution

W/Z Energy GeV	h⁰ cut GeV	σ _m /m w.r.t. m _{w/z}	σ _m /m w.r.t. m _{gen}	W/Z Sep. Efficiency
125	0	2.8 %	2.4 %	92 %
250	1.0	2.9 %	2.6 %	91 %
500	2.5	3.4 %	3.2 %	88 %
1000	5.0	5.2 %	5.1 %	80 %

- Note due to Breit-Wigner tails best possible separation is 96 %
- Separation of W and Z bosons up to 500 GeV very good
- Still need to work on 1 TeV (di)-jet mass resolution, not bad but...

★ At CLIC there is significant gamma-gamma to hadrons background

- ★ Implies tight bunch-tagging capability of a CLIC detector
- **★** However showers in the calorimeters are not instantaneous
 - propagation times
 - slow neutrons
 - nuclear de-excitations
- ★ HCAL timing studied in context of CLIC_ILD using QGSP_BERT

Steel HCAL

IC Tungsten: Time vs Energy

- **★** Tungsten much "slower", but not the only difference
 - distribution of single energy depositions much harder
 - significant number of single hits have energy depositions > few GeV
 - presumably from nuclear fragments

WHCAL

★ Look at PFA performance for CLIC_ILD with W HCAL (Barrel and Endcap)

- **★** For no time cut (1000 ns) have standard performance
- **★** For high(ish) energy jets fairly strong dependence on time cut
 - suggests time window of > 10 ns
 - need something like 50 ns to get into "flat region"
 - for CLIC need a PFA reconstruction strategy using timing information

Summary/Conclusions

PandoraPFA jet energy resolution with ILD-based detector models below 3.6 % entire jet energy range of ILC and CLIC ! Studies of confusion revealing • at high energies smooth transition from PFA to EFlow ★ Starting to optimize W/Z Jet mass reconstruction good W/Z separation for E upto 500 GeV I TeV W/Z separation much improved – still needs work **\star** CLIC timing requirements to reduce $\gamma\gamma \rightarrow$ hadrons will impact PFA tungsten "slower" than steel (will only be used in barrel) need to develop a PFA reconstruction strategy including timing information

CLIC studies beginning to push forward PFA development Improvements will benefit both CLIC and ILC detector studies

