

IWLC2010 International Workshop on Linear Colliders 2010

CLIC MDI stabilization update

A.Jeremie

G.Balik, B.Bolzon, L.Brunetti, G.Deleglise
A.Badel, B.Caron, R.Lebreton, J.Lottin
Together with colleagues from the CLIC stabilisation WG and CLIC MDI WG

Some comments

Tolerances	Main beam Quadrupoles	Final Focusing Quadrupoles
Vertical	1 nm > 1 Hz	0.1 nm > 4 Hz
Horizontal	5 nm > 1 Hz	5 nm > 4 Hz

Initially, only vertical direction was studied

Several PhDs:

- -C.Montag (DESY) 1997
- -S.Redaelli (CERN) 2003
- -B.Bolzon (LAPP) 2007
- -M.Warden (Oxford) 2010
- -R. LeBreton (SYMME) ~2012

- There is no completely validated stabilization system (off the shelf) available yet...
- There are proofs of principle available.

Example of spectral analysis of different disturbance sources

✓ Amplified by the structure itself :

2 different mechanical functions:

•lsolate

Compensate the resonances

Sub-Nanometer Isolation

Cantilever FF stabilisation

2.5m FF AI mock-up

LAPP active system for resonance rejection

Resonance rejection

Isolation

CERN TMC active table for isolation

> The two first resonances entirely rejected

>Achieved integrated rms of

0.13nm at 5Hz

(L.Brunetti et al, 2007)

Current studies

Replace big TMC table by smaller device

Initial study hypthesis: Soft support and active vibration control

Rigid: less sensitive to external forces but less broadband damping

Active vibration control

Active vibration control construction

First tests in Annecy

Later study adding "soft" material

Need sensors that can measure nm, 0.1Hz-100Hz in accelerator

Absolute velocity/acceleration studied at LAPP:

Type of sensors	Electromagnetic	Electrochemical	Piezoelectric accelerometers		
-	geophone	geophone			
Model	GURALP CMG-	SP500-B	ENDEVCO 86	393B12	4507B3
	40T				
Company	Geosig	PMD Scientific	Brüel & Kjaer	PCB	Brüel & Kjaer
	Ĭ		_	Piezotronics	_
Sensibility	1600V/m/s	2000V/m/s	10V/g	10V/g	98mV/g
Frequency range	[0.033; 50] Hz	[0.0167;75] Hz	[0.01; 100] Hz	[0.05; 4000] Hz	[0.3; 6000] Hz
Measured noise	0.05nm	0.05nm	0.25 nm	11.19nm	100nm
(f > 5Hz)			>50Hz: 0.02nm	>300Hz: 4.8pm	

Relative displacement/velocity:

Capacitive gauges: Best resolution 10 pm (PI), 0 Hz to several kHz Linear encoders best resolution 1 nm (Heidenhain)

Vibrometers (Polytec) ~1nm at 15 Hz

Interferometers (SIOS, Renishaw, Attocube) < 1 nm at 1 Hz

CERN test bench : membrane and interferometer

OXFORD MONALISA (laser interferometry)

Optical distance meters

Compact Straightness Monitors (target 1 nm at 1 Hz)

ATF2 vibration and vacuum test ⇒Validation ⇒Next: optical test

How to integrate with the rest (cantilever or Gauss points)

Mechanical scheme and automation point of view

Pattern of a global active/passive isolation

Possibility to determine the pattern of the global isolation (K_g)

Example if we consider Kg as a second order low pass filter:

Illustration with industrial products

Results

RMS

Integrated

.78e-1

10⁻¹⁴

0.018nm at 0.1Hz

For the simulation:

The mechanical support behavior is as a first approximation considered as a second order low-pass filter

One single system doesn't seem enough: need to find the subtle combination of different stabilisation strategies

Frequency [Hz]

10

Robustness (BPM noise)

Integrated RMS displacement = f(W)

W: white noise added to the measured displacement

BPM's noise has to be

< 13 pm integrated RMS @ 0.1 Hz

The used BPM is a post collision BPM:
Amplification of 10⁵

Next step: implement in Placet for final validation

Conclusions

- Proof of principle for CLIC FF stabilisation OK for CDR
- Need final validation of the technical system better adapted to tight IR space
- Need a more realistic integration scheme

Plans for TDR:

- Detailed technical validation
- Detailed integration
- Final sensor choice (develop a specific sensor?)
- •Test on short version QD0 prototype (vibration measurements w/wout cooling and stabilisation...)

Tests with the large prototype

Güralp CMG-40T

Sensor type: electromagnetic geophone broadband

Signal: velocity x,y,z

Sensitivity: 1600V/m/s

Frequency range: 0,033-50Hz

Mass: 7,5kg

Radiation: Feedback loop so no

Magnetic field: no

Feedback loop

First resonance 440Hz

Temperature sensitivity: 0,6V/10°C

Electronic noise measured at >5Hz: 0,05nm

Stable calibration

Endevco 86

Sensor type: piezoelectric accelerometer

Signal: acceleration z

Sensitivity: 10V/g

Frequency range: 0,01-100Hz but useful from 7Hz

Mass: 771g

Radiation: piezo OK, but resin?

Magnetic field: probably OK but acoustic vibrations?

Feedback loop

First resonance 370Hz

Temperature sensitivity: <1%

Electronic noise measured at >5Hz: 0,25nm, >50Hz 0,02nm

Stable calibration, flat response

Doesn't like shocks

SP500

Sensor type: electrochemical, special electrolyte

Signal: velocity

Sensitivity: 20000V/m/s

Frequency range: 0,016-75Hz

Mass: 750g

Radiation: no effect around BaBar (don't know exact conditions)

Magnetic field: tested in 1T magnet => same coherence, amplitude?

Feedback loop

First resonance >200Hz

Electronic noise measured at >5Hz: 0,05nm

Unstable calibration, response not flat

Robust

