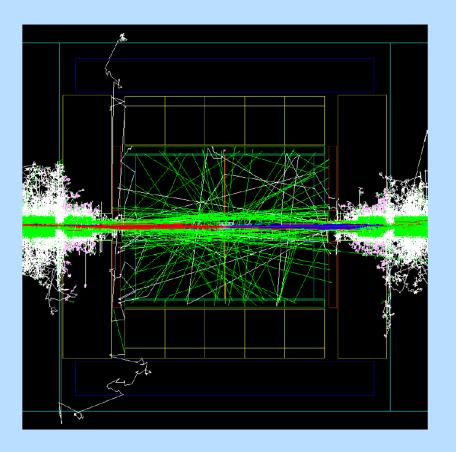
Background studies at ATF2 and the BDS/IR -focus on neutrons-


Hayg GULER, <u>Marc VERDERI</u> LLR - Ecole polytechnique / IN2P3 With ANR funding through ANR-06-BLAN-0027 *IWLC 2010*

Introduction [1/2]

- Background studies for ILC/CLIC are carried on with simulation tools
 - eg : Geant4, FLUKA, ...
 - And detailed studies have already been conducted
 - See for example Adrian Vogel's thesis (with Geant4)
- Reliability of simulation is however questioned
 - Do MC and data differ by large factors ?
 - What is the case for the broadly used Geant4 software ?

Example of background simulation

The Whole Detector – After 1/10 BX

Adrian Vogel

ILD Meeting, Cambridge, 2008-09-11

Introduction [2/2]

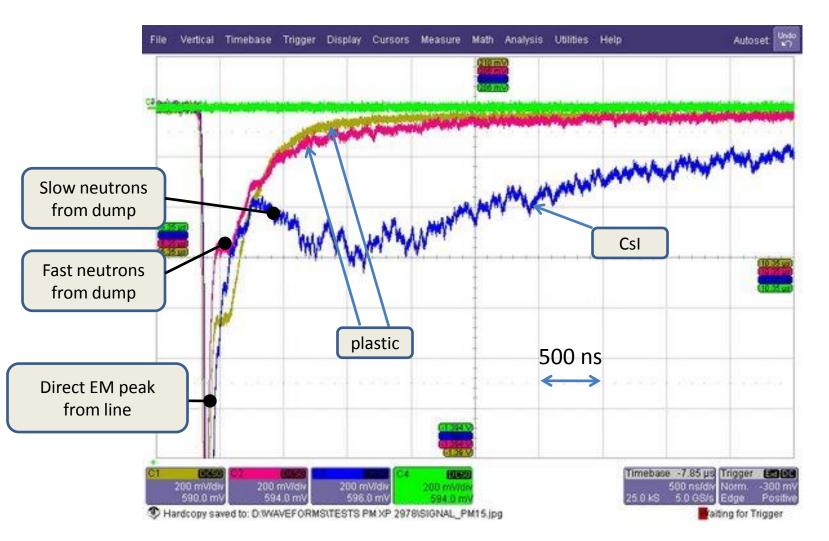
- Activity at ATF2 to address some of the reliability questions of Geant4
 - The approach is to consider a real case situation
 - And "simply" measure, simulate, and compare
- What can be learned at ATF2, where e⁻ beam energy is 1.3 GeV ?
 - At CLIC/ILC the maximum energy is O(TeV)
 - But in dense materials, this energy rapidly degrades to low energy EM particles
 - With high multiplicity
 - Neutron production through photo-nuclear effects is then dominated by this low energy regime
 - In the beam dump area
 - But also in dense materials close to the IP
 - ATF2 can say something about this neutron production regime
 - An other aspect is to learn and exercise in a real case methods and techniques needed for background simulation
 - As straightforward simulations are inefficient in getting workable statistics
 - This is needed for neutron background simulation
 - But (even if not presented today) should be useful for EM background modeling, in trying to correlate background level with beam parameters

EXPERIMENTAL SETUP AND MEASUREMENT APPARATUS

Experimental setup and apparatus

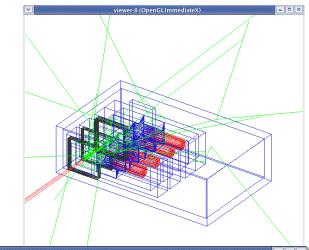
- Measure neutrons exiting from ATF2 beam-dump
 - Beam dump made of joint slabs iron made [~(2m)³]
 - And has a small central part made of copper
- Measurement devices:
 - Plastic (BC-408) and pure CsI scintillators (both provided by Saint Gobain), read by photomultipliers
 - Csl crystal equiped with filter to cut the slow light component
 - Fast, and different response to neutron
 - Subject to different systematic effects => allow for cross-check
 - Plastic : for fast neutrons, Csl : intermediate
 - Record the time-dependent signal
 - Ie signal waveform, sampling at 1 G-sample/s
 - Absolute amplitude and time dependent signal shape tell about neutron production and transport in beam dump

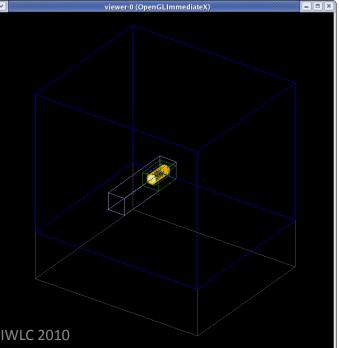
Measurement devices


• Modules list:

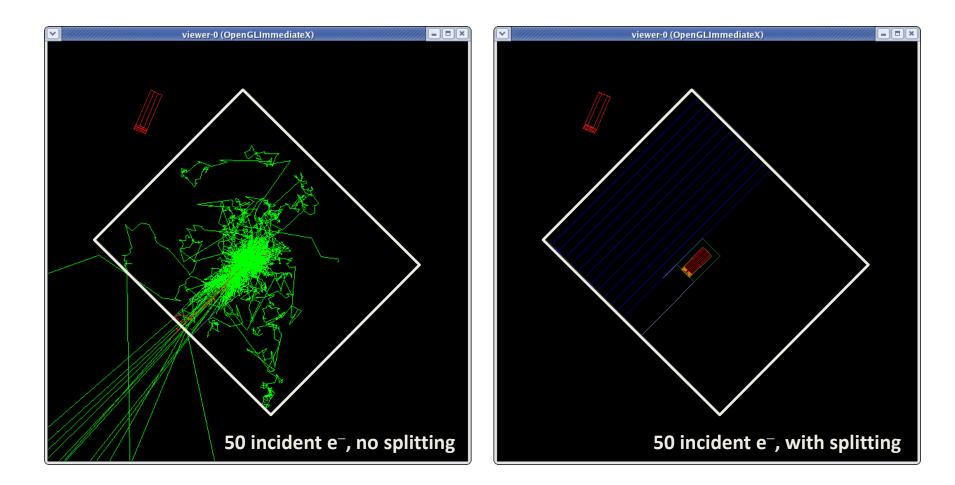
Module	Delivery	Module	Scintillator	Scintillator	Photomultipler
Number	Date	Name	Type	Dimensions (mm)	Type
1	March 2009	mod-1-old-P	BC-408	$60 \times 60 \times 38$	XP2978/B
2	March 2009	mod-2-old-CsI	CsI	$60 \times 60 \times 20$	XP2978/B
3	March 2009	mod-3-old-P	BC-408	$60 \times 60 \times 38$	XP2978/B
9	March 2009	$\operatorname{mod-ghost-old}$	(none)	/	$\rm XP2978/B$
4	October 2009	mod-1-new-P	BC-408	$60 \times 60 \times 38$	XP2920
5	October 2009	mod-2-new-P	BC-408	$60 \times 60 \times 38$	XP2920
6	October 2009	mod-3-new-P	BC-408	$60 \times 60 \times 38$	XP2920
7	October 2009	mod-4-new-CsI	CsI	$60 \times 60 \times 20$	XP2920
8	October 2009	mod-5-new-CsI	CsI	$60 \times 60 \times 20$	XP2920

• Installation example:


Examples of observed signals near dump (trigger = kicker)



SIMULATION SETUP AND PRACTICE


Simulation setup

- Geant4 version and physics:
 - Use Geant4, v9.3 ref 06
 - Physics list considered :
 - QGSP_BERT_HP, to start with
 - There are other ones a priori suitable
- Implement detailed description of measurement modules, and realistic description of beam dump
- Use "splitting" technique, also called "geometrical biasing"
 - To get workable statistics

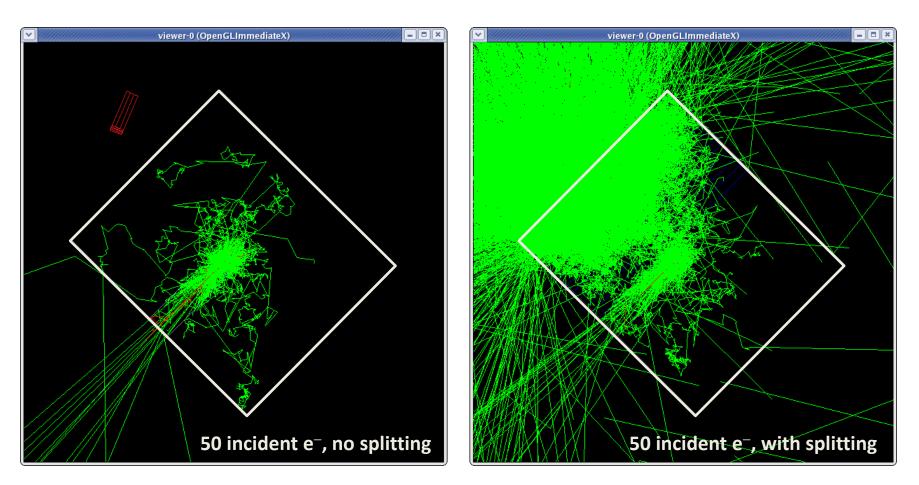
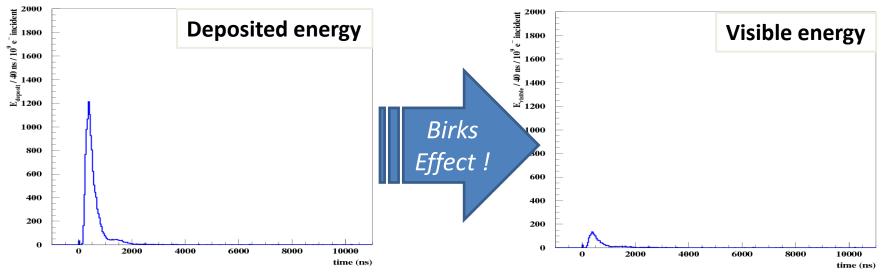


Illustration of the « splitting » technique

Illustration of the « splitting » technique

In this case, biased simulation is about 3 order of magnitudes more Efficient than the « straightforward » simulation.


EXPERIMENTAL EFFECTS AND MEASUREMENTS

Experimental effects

- Experimental effects can be large
 - And are still under work at present
- Effects under study:
 - Calibration
 - Calibration done with cosmic rays
 - Attenuation by cables
 - Up to 50 meters long at present $\ensuremath{\mathfrak{S}}$
 - But fortunately rather small effect for slow signal like average of neutron signals
 - Scintillation saturation (Birks' effect) in plastic scintillators
 - Large effect for neutrons !
 - Fast neutrons detected as $n \rightarrow p$, with high dE/dx for p

Size of Birks saturation effect

- Birks saturation : $dE_{vis}/dx \sim dE_{dep}/dx / (1+k_B dE_{dep}/dx)$
- Simulated waveform in plastic scintillator
 - Birks constant $k_B = 1.15 \cdot 10^{-2} \text{ g/cm}^2/\text{MeV}$
 - value in BC-408 plastic, as measured in Chinese Physics C (HEP & NP), 2010, 34(7) 988-992

- Very large effect !
- Size of systematic effect on this reduction to be estimated.

Preliminary Geant4/data comparison

- incident 200 **Experimental setup:** Plastic DATA 150 Plastic, Csl, plastic Geant4 100 70 cm to dump on lateral side (opposite to Shintake 50 0 photon detector) $\mathcal{E}_{visible}$ 200 Csl 150 dump 100 70 cm 50 detectors e⁻ beam 0 200 Plastic 150 Plots normalized to 10⁹ 100 incident 1.3 GeV e⁻. 50 Significant differences 0 6000 8000 10000 2000 4000
- But Geant4 reproduces the gross features, and is not away by order of magnitudes.

time (ns)

Conclusion

- A study is ongoing at ATF2 to evaluate the physics reliability of Geant4 about neutron production and transport in a context of background modeling
- Comparison between Geant4 (QGSP_BERT_HP physics list) and data are still preliminary at this stage
 - More work needed to have systematic effects on measurements under control
 - More Geant4 physics lists to be tested
- Simulation and data differ
- But gross-features are reproduced by the simulation
 - Simulation and data are not apart from order of magnitudes
 - They are typically within a factor 2 to 5
- This is, we hope, a start of the response for the MDI needs