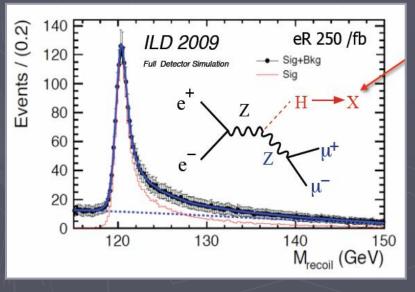
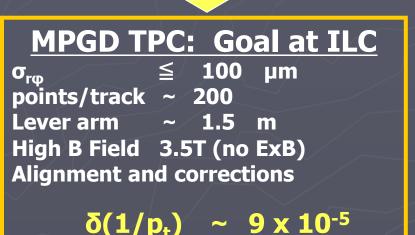
Summary: Gas Tracking

IWLC2010 20 October 2010 Geneva


Takeshi MATSUDA DESY/FLC and KEK/IPNS

1


Momentum Resolution at ILC (What is the goal at CLIC?)

 Higgs recoil mass: e⁺e⁻ → ZH (Z→μµ/ee) + X: The beam energy spread dominates when δ(1/pt) ≤ 5 x 10⁻⁵.
 Slepton and the LSP masses though the end point measurement: σ_M (Momentum resolution) ~ σ_M (Parent mass) at 1 ab⁻¹ when δ(1/pt) ≤ 5 x 10⁻⁵
 E_{cm} determination from e⁺e⁻ → µ⁺µ⁻(γ)

4. Rare decay Br (H \rightarrow µµ) in e⁺e⁻ \rightarrow ZH and Hvv:

Higgs mass resolution by ILC-ILD

(TPC alone)

ILC-RDR

LDC LOI

TABLE 4.3-5

Goals for performance and design parameters for an LCTPC with standard electronics.

Size $\phi = 3.6 \text{m}, L = 4.3 \text{m}$ outside dimensions $\delta(1/p_t) \sim 9 \times 10^{-5}/\text{GeV/c TPC}$ only (× 0.4 if IP incl.) Momentum resolution (3.5T) $\delta(1/p_t) \sim 2 \times 10^{-5}/\text{GeV/c} \text{ (SET+TPC+SIT+VTX)}$ Momentum resolution (3.5T) Solid angle coverage Up to $\cos\theta \simeq 0.98$ (10 pad rows) TPC material budget $\sim 0.04 X_0$ to outer fieldcage in r $\sim 0.15 X_0$ for readout endcaps in z $\sim 1 \times 10^6 / 1000$ per endcap Number of pads/timebuckets Pad size/no.padrows $\sim 1 \text{mm} \times 4-6 \text{mm} / \sim 200 \text{ (standard readout)}$ $< 100 \mu m$ (average over L_{sensitive}, modulo track ϕ angle) σ_{point} in $r\phi$ σ_{point} in rz $\sim 0.5 \text{ mm} \pmod{\theta}$ angle) $\sim 2 \text{ mm} \pmod{\text{track angles}}$ 2-hit resolution in $r\phi$ 2-hit resolution in rz $\sim 6 \text{ mm} \pmod{\text{track angles}}$ dE/dx resolution $\sim 5 \%$ Performance > 97% efficiency for TPC only $(p_t > 1 \text{GeV/c})$, and > 99% all tracking (p_t > 1 GeV/c) [83] Background robustness Full efficiency with 1% occupancy, simulated for example in Fig. 4.3-4(right) Background safety factor Chamber will be prepared for $10 \times$ worse backgrounds at the linear collider start-up

Options of MPGD TPC for LC

Analog TPC:

 (1) Multi layer GEM + Narrow (1mm wide) pad readout: Defocusing by multilayer GEM
 (2) MicroMEGAS + Resistive anode pad redaout: Widening signal by a resistive anode

<u>Beam test results $\rightarrow \sigma_{ro} < 100 \mu m$ @ILD TPC</u>

(3) Multilayer GEM + Timepix
 A good efficiency for primary electrons
 → A larger pixel size but still a higher granularity.

Digital TPC:

(4) Ingrid (MicroMEGAS) Timepix: (Also the GEM-like Ingrid structure) Digital \rightarrow Free from the "gas gain fluctuation" \rightarrow Expect a further improvement in $\sigma_{r\phi}$ \rightarrow To be demonstrated soon in beam test soon.

TPC R&D by LC TPC Collaboration

Demonstration Phase: Small prototype tests

Provide a basic evaluation of the properties of MPGD TPC by using small prototypes, demonstrate that <u>the requirement of the point</u> <u>resolution may be achieved</u>.

<u>Consolidation Phase</u>: Large prototype tests (2008-)

Design, build and operate a "Large Prototype" using the EUDET facility at DESY comparing tecnologies and <u>demonstrating the momentum</u> <u>resolution</u> in a way.

Design Phase:

ILD LOI \rightarrow ILD DBD \rightarrow

Start working on engineering design of TPC at ILC (ILD).

(LC TPC collaboration: MOU)

Perform beam tests at all stages.

Talks in the ECFA Parallel Sesions Tracking & Vtx (TPC) <u>@IWLC2010</u>

20 October

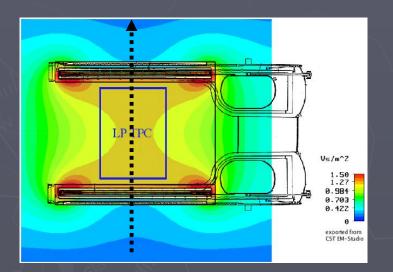
09:00	The S-Altro chip design for TPC pad readout by Paul Aspell	- (1)
09:20	Design status of the Timepix2 pixel detector chip by Xavier L. Cudie	- (2)
09:40	ILD-TPC end plate studies by Steve Aplin	- (3)
10:00	I-DEAS for an ILD-TPC by Volker Prahl	- (4)
10:15	Test beam needs for TPC R&D by Takeshi Matsuda	- (5)

21 October

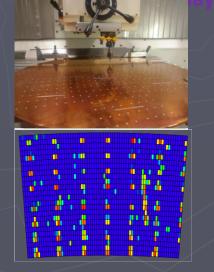
16:00	ALICE TPC by Peter Braun-Munzinger	- (6)
16:30	Studies for a TPC in a CLIC Detector by Martin Killenberg	- (7)
16:50	Test beam Results from JGEM/Tracking Software by Ryo Yonanime	- (8)
17:10	Recent Analysis Results from MicroMegas by Wen Wenxin	- (9)
17:30	Single Point Resolution Studies and Development and Analysis	
	of Grid GEMs by Lea Steder	-(10)
17:50	Towards a 7-Module Large Prototype by Paul Colas	- (11)
18:10	The LP Setup at DESY: a Status Report by Klaus Dehmelt	- (12)

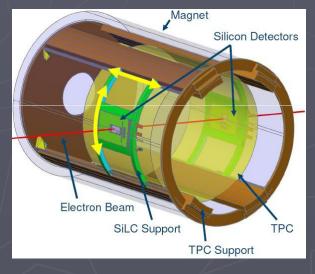
EUDET TPC Beam Test Facility at DESY By K. Dehmelt

PCMAG :


Open SC magnet (1T) Coil/cryostat of 20%X0 On a moving stage (2010)

T24-1 test beam: 1-6 GeV/c electron beam


Cosmic trigger counters:



PCMAG on a moving stage (2010)

Non-uniform magnetic <u>filed</u> (on purpose)

Laser pattern on cathode for calibration Si Envelope

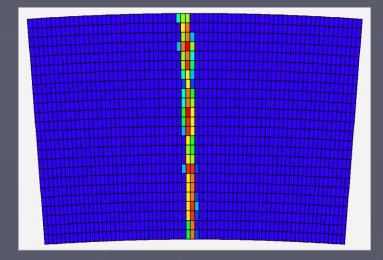
TPC Large Prototype Tests: LP1

2008:	
Nov-Dec	MicroMEGAS modle w/ resistive anode (T2K electronics)
2009:	
Feb-Apr	3 Asian GEM Modules w/o Gating GEM (3,000ch ALTRO electronics)
Apr	TDC electronics with an Asian GEM Module
Apr-May	Maintenance of PCMAG
May-Jun	MicroMEGAS w/ two different resistive anodes (New T2K electronics)
	Setup and test of laser–cathode calibration
Jun	GEM+Timepix (Bonn)
Jun	Installation of PCMAG moving stage and SiTR support
July	TDC electronics with an Asian GEM module
	ALTRO electronics study w/ an Asian GEM module
July-Aug	Full installation of PCMAG moving stage
Aug	MicroMegas w/o resistive anode with laser-cathode calibration
Sept	A Bonn GEM module (A small aria GEM with ALTRO electronics)
Nov	MicroMEGAS with SiTR
Dec	MicroMEGAS with the carbon loaded kapton resistive anode.
2010:	
March	MicroMEGAS using PCMAG movable table.
March and	d Sept 3 Asian GEM modules w/ gating GEM or a field shaper) using the PCMAG movable table (7616ch ALTRO electronic)

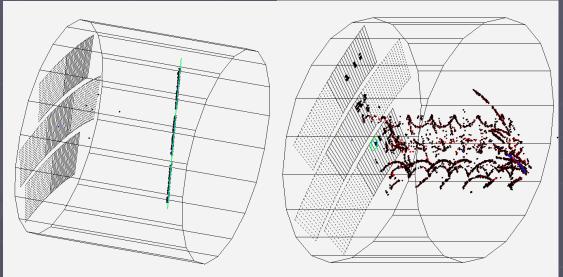
<u>TPC Large Prototype Beam Tests</u>: By R. Yonamine and Wen Wenxi MicroMEGAS (MM) module/Three Asian GEM Modules

Four different MM modules with different resistive anode

With one of the MM module readout by T2K electronics (1724ch)


An Asian GEM modules with a field shaper in the place of the gating GEM

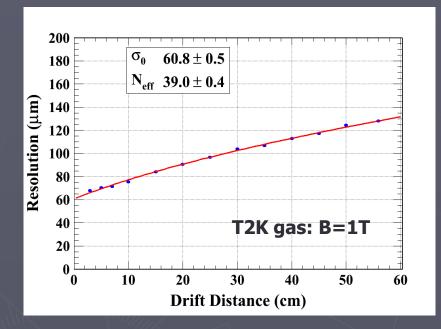
Beam test with three Asian GEM modules readout by PCA16-ALTRO electronics (7616ch)

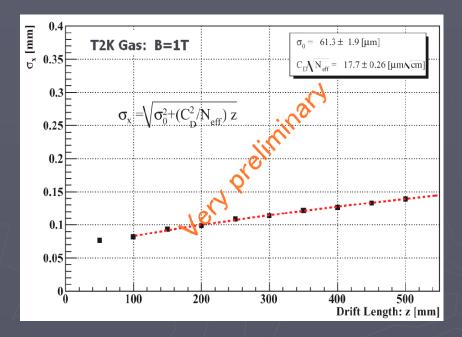

9

TPC Large Prototype Beam Test: Events

One MicroMGAS modul (9)

With a restsive anode 24 rows x 72 pads Pad: 2.7-3.2 mm wide, 7 mm long T2K electronics (1728ch)

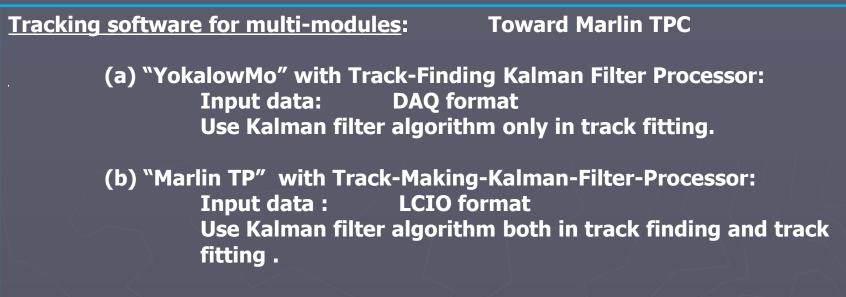



Three GEM modules (8)

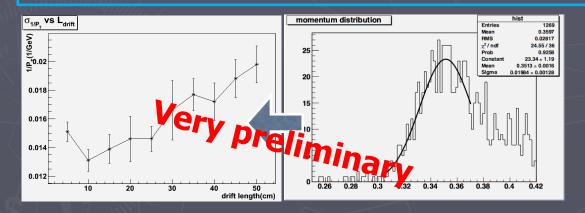
Without gating GEM 28 rows x 176 -194 pads Pad: ~ 1.1 x 5.4 mm² PCA16/ALTRO electronics (7616ch Only a part of the three GEM modules quipped with readout electronics.

A typical single track event (left), and an event with many low-energy curling tracks from the TPC cathode plane where a beam electron hits (right).

TPC Large Prototype Tests: Results

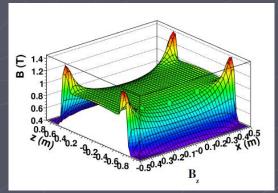


<u>MicroMEGAS module</u> with a carbon-loaded kapton resistive foil (T2K electronics) <u>GEM module</u> of two layers of 100µmt GEM (PCA16/ALTRO electronics)


Point resolution for ILD TPC (2m drift in B=3.5T) \rightarrow 100µm or better.

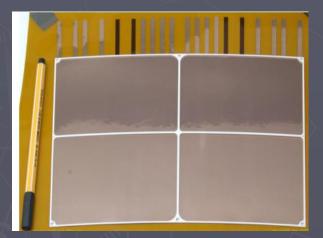
80µm for the parameters obtained by MicroMEGAS. The drift velocities and constant measured were consistent with Magboltz simulation.

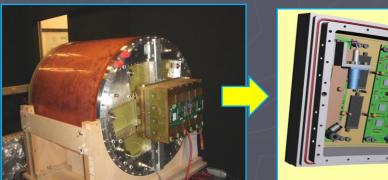
Marlin TPC for LP Beam Test:

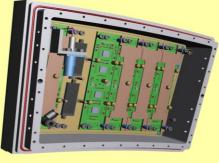

Implementation of the non-uniform magnetic filed: Now under work

Resolution of 1/P_t

1/P_t distribution

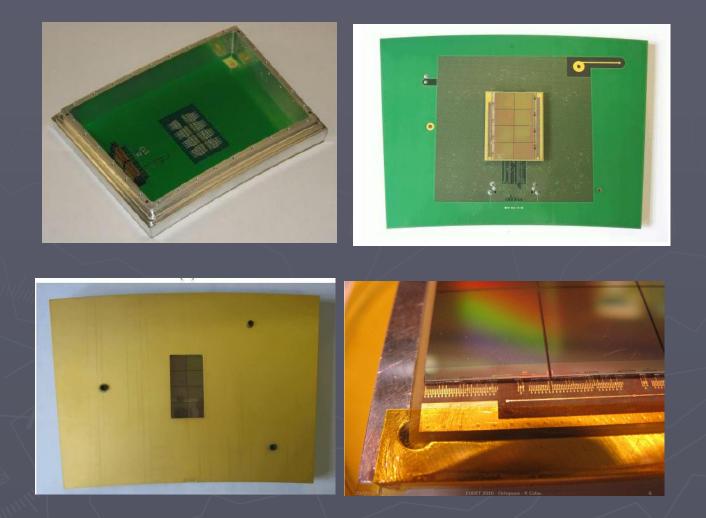

(No serious selection of track/no correction for non-uniform magnetic field, module misalignment and distortion)



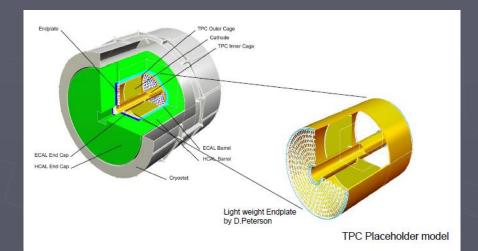

By R. Yonamine

<u>A field model by a precision</u> <u>field measurement (2007)</u>

2010: Nov-DEC layers 2011:	A prototype of DESY GEM module: A GEM module of three GEM supported by thin ceramic spacers.
Spring	A module with 8 Ingrid Timepix (Octopus). The first MicroMEGAS module with compact T2K electronics. More DESY GEM modules.
June-Dec	PCMAG modification for "Liq. He less"
2011-2012:	7 MicroMEGAS modules with compact T2K electronics (Full volume tracking in LP).



A GEM glued on a thin ceramic Spacer (DESY GEM module) Based on a test by a small prototype 7 MicroMEGAS modules with new and compact T2K electronics


LP1 Module with 8 Ingrid Timepix: Octopus (No talk in this meeting)

To be the first test of the Digital TPC module in TPC LP

I-DEAS for ILD TPC:By Volker Prahl3D Placeholder Model and Engineering Design of ILD TPC

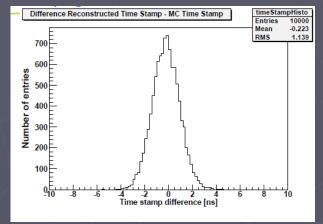
Stability of field cage Advanced endplate (LP model) Central cathode HV feedthrough TPC support structure Installation and installation tools

Current LP1 endplate mechanical structure

LP1 endplate Hybrid construction (Av: 7-8%X)

LP1 endplate Spaceframe constructio (Av: 7-8%X)

Simulation Studies:


Influence of the material/geographical thickness of TPC endplate on qqbar (usd) energy resolution at 91/200/500GeV (by S. Aplin)

ILD LOI: TPC endcap of 15%X0 with 20cm spacing to the ECAL surface Used Mokka v01-07 with the ILD_00 detector model

 \rightarrow No real change for 15-60%X0

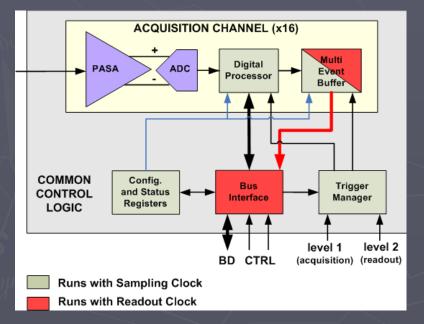
 \rightarrow No real change for the distance of 20-30cm (A comment: how about the change of jet angle)

	45 GeV	100 GeV	250 Ge\
15 %	4.1+-0.1	3.2 +- 0.1	3.0+-0.1
30 %	4.4+-0.1	3.1 +- 0.1	3.0+-0.1
45 %	4.5+-0.1	3.2 +- 0.1	3.3+-0.1
60 %	4.8+-0.1	3.3 +- 0.1	

<u>Time stamping at CLIC by TPC-Si envelopes (SET)</u> (By M. Killenberg)

TPC measures z = (t_{drift}+B_X Δt_{BX})V_{drift} while SET measures z directly. Use muons (2-200GeV/c) from the interaction point and stand alone Marlin TPC. SET resolution of 50µm. → With multiple scattering and realistic SET resolution < 1.5 ns (A comment: Try to use SIT → TPC tracking/extrapolation with backgrounds)

S-Altro16 Demonstrator


By Paul Aspell

To demonstrate integration per channel of an analog front-end (PCA16), an ADC and digital signal processing (ALTRO) in a single chip by IBM 130nm CMOS.

Data processing of 25/50/100us of data sampled at 40/20/10MHz. 8mW/channel. 4 gains and 4 shaping times with power switching mode. Submitted in summer 2010 and ready in 2010.

S-Altro16 in MCM will be compatible with the pad size of 1x6 mm². Will be used in next GEM and Micromegas modules.

 Control of the second se
🚆 LELE V 📕 LEED V 🛄 LEED V 🛄 LEED V 🚮 LEED V 🚛 LEED V 🛄 LEED V 📰 LEED V
S-Altro16

S-Altro16 Architecture

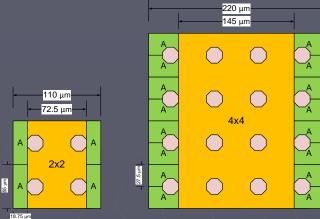
Timepix2: Talk (7)

Limitations of Timepix1:

Single (or sparse multiple) event readout

No trigger capability

Full frame readout only


Arrival time OR energy information OR particle counting

Time-walk > 50ns

Large periphery -> Non active area (~2000µm)

Timepix2:

Broad applications: HEP \rightarrow LHCb, CLIC interest To be submitted by the end of 2011.

Super pixel architecture

18

Pixel size	55 μm x 55 μm
Pixel matrix array	256 x 256
Sparse readout	YES
PC, TOA or TOT recorded simultaneously	YES (2 at a time)
Minimum detectable charge	≤ 500 e-
TOA resolution	>1.5ns (25ns/16) 4bits (Gossipo3 style)
Peaking time	< 25 ns
TOT resolution	<5% channel to channel spread
Technology	IBM 130nm DM 3-2-3
Power consumption	<1.5W/cm² (~45 µW/pixel) @1.2 V
Target floorplan	3 sides buttable and minimum periphery
TSVs possibility	YES. Multi-dicing scheme as Medipix3

TPC LP Beam Test: Status

(1) Point resolution σ_{ro} : Demonstrated in TPC LP beam test

GEM & MicroMEGA with analog readout T2K gas of low diffusion (high $\omega \tau$) in high magnetic fields

(T2K gas: Ar/CF4(3%)/isobutene(2%)

(2) Momentum resolution: - 2011

To get momentum resolution match to the point resolution

(3) Still need to demonstrate:

dE/dX Performance of the digital TPC in LP beam test

Ion gating: the low electron transmission of gating GEM

Ву ТМ

2010-2011	Continue LP1 at DESY to complete the measure of momentum resolution and others.
2011	PCMAG modification: Potable PCMAG without Liq. He.
2012	Continue LP1 at DEST T24-1 beam line while preparing advanced endplate.
2012 -	LP2 beam test with advanced endplate at DESY Then visit a hadron beam (10-100GeV/c)