Summary of the $\gamma\gamma$ ECFA parallel session

Christophe Royon IRFU-SPP, CEA Saclay

Linear Collider Workshop, Geneva, October 18-22 2010

On behalf of the $\gamma\gamma$ session conveners, Maria Krawczyk, Stephen Maxfield, Margarete Mühlleitner, Christophe Royon

 $\gamma\gamma$ physics

Contents:

- Triple gauge and quartic anomalous coupling studies Oldrich Kepka
- ullet $\gamma\gamma
 ightarrow$ hadrons for CLIC Rohini M. Godbole
- Resonance-continuum interference effects for light Higgs Boson production at a photon collider, ie in $\gamma\gamma\to H\to b\bar b$ Lance Dixon
- Feasibility study of Higgs pair production in a photon collider Tohru Takahashi
- A sneak preview of the CLIC/PLC string hunter's companion Tomasz Taylor
- Stop mass determination at ILC Anna Skachkova (in Higgs/SUSY session)
- DIRAC gauginos and their scalar partners Jan Kalinowski (in Higgs/SUSY session)

- In order to extract Higgs couplings, would like to interpret the size of the bump as

$$\Gamma(H \to \gamma \gamma) \times \text{Br}(H \to b\bar{b}) = \frac{\Gamma_{\gamma} \Gamma_{b}}{\Gamma_{\text{tot}}}$$

• But this is not necessarily true if the signal interferes appreciably with the continuum background, in this case $\gamma\gamma \to b\bar{b}$

Resonance-Continuum interference in $\gamma\gamma \to H \to b\bar{b}$

- In SM, interference term negligible (less than 0.2% for a scattering angle of 45 degrees) except at very small scattering angle which cannot be measured experimentally
- Situation might be worse in beyond SM, needs to be studied in more details as a function of the model parameters (the *b* quark Yukawa coupling can be greatly enhanced)

Higgs pair production in a $\gamma\gamma$ collider - Tohru Takahashi

Purpose of this study: Study of Higgs self-coupling

$$\lambda = \lambda^{SM} (1 + \delta \kappa)$$

Self-coupling Parameter of deviation from the SM

ullet Large enhancement of cross section with respect to $\delta \kappa$

Optimal energy: 300 GeV

Feasibility study of Higgs pair production in a $\gamma\gamma$ collider

- Before cuts: 16.4 $\gamma\gamma \to H \to 4b$, 1.5 $10^7 \ \gamma \to WW \to 4q$, 1.2 $10^4 \ \gamma \to WW \to 4b$ per year for ILC standard parameters
- Neural net analysis based on χ^2 to reconstruct the Higgs or Z mass, transverse momentum, number of b-flavour jets... in progress: suppression of almost WW background, ZZ background still an issue (improved jet clustering improves the results)
- \bullet To be pursued with better jet clustering improvement, study $\gamma\gamma \to 4b$ background, different Higgs masses

Stop pair production in polarized $\gamma\gamma$ at ILC - Anna Skachkova

• Considered process:

STOP STOP
$$\rightarrow$$
 b χ_1^+ b $_{bar}$ $\chi_1^- \rightarrow$ b b $_{bar}$ q_i q_{j} $_{bar}$ $\mu^ \nu_{\mu}$ χ_1° χ_1° t t \rightarrow b W⁺ b $_{bar}$ W⁻ \rightarrow b b $_{bar}$ q_i q_{j} $_{bar}$ $\mu^ \nu_{\mu}$

 The only difference of stop/top pair production is the presence of two non-detectable neutralinos in the case of stop pair production

Stop pair production in polarized $\gamma\gamma$ collisions at ILC

- New code for cross section of STOP pair production that allows to take into account the polarizations of colliding photons implemented in PYTHIA 6
- Invariant mass of the final jets and the visible energy variables is the most efficient for signal/background separation
- Possibilty of a good M_{stop} reconstruction using the right-hand edge point of $(B_{jet} + 2jets_W)$ demonstrated

DIRAC gauginos and their scalar partners - Jan Kalinowski

Gamma colliders ideal for searching for heavy scalars/pseudoscalars

decays via

A preview of the string hunter's companion - Tomasz Taylor

- In string theory, elementary particles are quantized vibrations of fundamental strings. The zero modes are massless, the first harmonic have masses equal to the fundamental mass M, the second $\sqrt{2}M$, and in general $M_N=\sqrt{N}M$
- At LHC: Gluon gluon interactions can lead to resonances decaying into 2 or more jets
- If $M\sim TeVs$ (if extra dimensions ~ 1 mm), possibility of seeing some resonances at a $\gamma\gamma$ collider in a much cleaner way

 $\frac{d\sigma}{dM}$ (units of fb/GeV) vs. M (TeV)

plotted for the case of SM background (dashed line) and the (first resonance) string signal + background for $\sqrt{s} = 3$ TeV (assume M=2 TeV) and $\sqrt{s} = 5$ TeV (assume M=4 TeV).

The next resonance would appear at $\sqrt{3}M$ because photons do not couple to $\sqrt{2}M$ resonances

(γ DFs from Jikia, Eboli et al [arXiv:hep-ph/9210277], Cheung [arXiv:hep-ph/9211262])

Hadronic backgrounds due to $\gamma\gamma$ processes in e^+e^- - Rohini Godbole

- Hadron production in $\gamma\gamma$ collisions estimated using LEP data, soft and hard part (photon structure function) of the $\gamma\gamma$ cross sections
- Description of LEP data: large uncertainty leading to 3 possible fits

Hadronic backgrounds due to $\gamma\gamma$ processes at e^+e^- colliders

- Model leading to a good description of total cross section
- Large $\sigma(ee \to hadrons)$ at large \sqrt{S} , especially at CLIC
- Leads to large number of underlying events due to $\gamma\gamma$ collisions at CLIC, 4 to 5 at 3 Tev!, background to be taken into account in searches/precision measurements

W/Z pair production at the LHC and at ILC/CLIC - Oldřich Kepka

- Rich $\gamma\gamma$ physics at LHC
- Need to install forward proton detectors to tag final state intact protons (ATLAS Forward Physics project, same in CMS)

SM Observation of W γ -induced production at the LHC

- discovery with L=5 fb⁻¹
 (8 events, 1 background)
- big advantage, missing mass reconstructed with AFP: $W = \sqrt{s\xi_1\xi_2}$

cut / process	$\gamma\gamma \to ee$	$\gamma\gamma \to \tau\tau$	$DPE \!\! o ll$	$DPE {\to} WW$	$\gamma\gamma \to WW$
$30{\rm fb}^{-1}$	$(\mu\mu)$				
$p_T > 10\mathrm{GeV}$	24896	177	17931	8.8	95
after cuts	0	0	1.0	0.67	51
O. Kepka page 10					

Quartic anomalous couplings

Anomalous couplings a_0^W , a_C^W , a_0^Z , a_C^Z equal to zero in SM

Sensitivities at high luminosity

Couplings	OPAL limits	Sensitivity @ $\mathcal{L}=30$ (200) fb ⁻¹
	$[GeV^{-2}]$	95% CL
a_0^W/Λ^2	[-0.020, 0.020]	$2.6 \times 10^{-6} \ (1.4 \times 10^{-6})$
a_C^W/Λ^2	[-0.052, 0.037]	$9.4 \times 10^{-6} \ (5.2 \times 10^{-6})$
a_0^Z/Λ^2	[-0.007, 0.023]	$6.4 \times 10^{-6} \ (2.5 \times 10^{-6})$
a_C^Z/Λ^2	[-0.029, 0.029]	$24 \times 10^{-6} \ (9.2 \times 10^{-6})$

 \bullet improvement of sensitivities up to 4 orders of magnitude with $30\,\mathrm{fb}^{-1}$

Study in progress for CLIC/ILC as a $\gamma\gamma$ collider

Conclusion

- Rich $\gamma\gamma$ physics at a $\gamma\gamma$ collider: Higgs pair production, SUSY (stop mass determination, gauginos...), strings
- Resonance-continuum interference effects for light Higgs boson production in $\gamma\gamma \to H \to b\bar{b}$ small for SM
- Feasibility study of Higgs pair production in a photon collider $(\gamma\gamma \to H \to 4b)$: in progress, ZZ background still an issue, study better jet clustering algorithms
- Large $\sigma(ee \to hadrons)$ at large \sqrt{S} , especially at CLIC: Leads to large number of underlying events due to $\gamma\gamma$ collisions at CLIC, 4 to 5 at 3 Tev!, background to be taken into account in searches/precision measurements
- Anomalous coupling studies: especially interesting to probe higgsless and extra-dimensions models which appear as new $\gamma\gamma WW$ and $\gamma\gamma ZZ$ couplings