Performance of a Full Silicon Tracker at CLIC

Christian Grefe (christian.grefe@cern.ch) Blai Pié i Valls (bpie@ccm.ub.es)

International Workshop on Linear Colliders 2010 Geneva, 21 October 2010

Outline

1 Introduction

2 Track Reconstruction Algorithm

IWLC10

$\mbox{CLIC_SiD}$ Detector Concept

- Detector concept based upon the SiD detector design for ILC:
 - Full silicon tracker.
 - 5 T magnetic field.
- Reoptimized to operate at 3 TeV. Relevant differences for tracking:
 - Higher energy collisions:
 - \hookrightarrow Higher energy particles.
 - \hookrightarrow Higher density in jets.
 - \hookrightarrow Higher forward region occupancy.
 - Higher beam induced background:
 - \hookrightarrow Vertex detector: inner radius increased from 13 mm to 27 mm.
 - Higher bunch crossing and bunch train rates:
 - $\hookrightarrow {\rm Time \ stamping \ challenge...}$
- We need to assess performance of the new design.

Full Silicon Tracker

Main Tracker

5 barrel layers + 4 endcap stereo-disks

 $10 \text{ cm} \times 25 \ \mu\text{m}$ Si strips (50 μm pitch digital readout)

Material scan vertex region CLIC_SID

Vertex detector material budget (Fast simulation and Geant4 scan)

[Dominik Dannheim]

IWLC10

Performance of a Full Silicon Tracker at CLIC - C. Grefe and B. Pié

Silicon Tracker Coverage Angular dependence of number of tracker planes seen by a particle.

IWLC10

Performance of a Full Silicon Tracker at CLIC - C. Grefe and B. Pié

Track Reconstruction: the SeedTracker Algorithm

How it works

1. Form all possible 3 hit track in three defined *seed layers*.

2. Require the presence of a hit in a *confirmation layer*, to highly reduce possible combinations.

- 3. Add hits to the track on the *extension layers*.
- 4. Final selection of tracks
 - Tracks are required to have a minimum number of hits (strategy dependent).
 - A helix fit is performed, and a cut on its χ^2 is applied to select good tracks.
 - Finally, if two tracks share more than one hit, the best candidate is selected.

[Richard Partridge]

IWLC10

Performance of a Full Silicon Tracker at CLIC - C. Grefe and B. Pié

Track Reconstruction: the SeedTracker Algorithm

Strategies

- A full set of strategies is needed to cover all possible combinations of *seed layers*.
- An *automatic strategy builder* is used to ensure that all possible combinations of layers are taken into account.
- 5, 6 and 7 hit strategies will be shown for comparison.

Example: 7 hit strategy.

- Requires at least 7 hits per track.
- $p_t > 0.2$ GeV.
- Impact parameter cuts: $|d_0| < 0.5$ cm and $|z_o| < 1$ cm.
- Quality of fit: $\chi^2 < 50$.

Performance

Definitions

• Efficiency:

$$eff = \frac{\#reconstructed \text{ tracks matching truth}}{\#final \text{ state MC particles}}$$

• Purity:

 $pur = \frac{\#hits \text{ in a reconstructed track matching truth}}{\#total hits}$

Samples

- Single muons, shot at different angles and energies.
- $e^+e^- \rightarrow Z \rightarrow qq \ (uds)$ events (3 TeV).

Track finding efficiency versus transverse momentum $(\theta > 8^{\circ})$.

IWLC10

Performance of a Full Silicon Tracker at CLIC - C. Grefe and B. Pié

Track finding efficiency versus angle $(p_t > 0.25 \text{ GeV})$.

- Dip at $\theta \simeq 28^{\circ} \rightarrow$ Seems to be related to transition region between barrel and endcap in the vertex detector.
- Forward region ($\theta \leq 32^{\circ}$): unefficiency not well understood.

Momentum resolution, $\sigma(1/p)$ (1/GeV), versus angle and momentum.

IWLC10

Performance of a Full Silicon Tracker at CLIC - C. Grefe and B. Pié

Track finding efficiency versus transverse momentum ($\theta > 8^{\circ}$). Color: different strategies.

IWLC10

Performance of a Full Silicon Tracker at CLIC - C. Grefe and B. Pié

Track finding efficiency versus angle ($p_t > 0.25$ GeV). Color: different strategies.

• Same effects already observed with single muons.

IWLC10

Performance of a Full Silicon Tracker at CLIC - C. Grefe and B. Pié

Track purity Fraction of true hits per track versus total number of hits assigned to track. Color: different strategies.

IWLC10

Performance of a Full Silicon Tracker at CLIC - C. Grefe and B. Pié

Histogram: percentage of tracks having n false hits assigned. Color: different strategies.

IWLC10

Performance of a Full Silicon Tracker at CLIC - C. Grefe and B. Pié

Conclusions

Acceptance

- Tracker acceptance down to $\sim 7^{\circ}$.
- Track reconstruction in good shape down to $\sim 9^{\circ}$.

Performance

• Physics requirements fulfilled by momentum resolution:

$$\frac{\Delta p}{p^2} \sim 10^{-5} \text{ GeV}^{-1}$$

• Robustness against machine induced background has been proven on previous version (CLIC_SiD_01). Has to be verified.

Open issues

- Tracking in the forward region: non-understood unefficiencies and dip.
- Impact parameter resolution not yet well understood.

Backup Slides

IWLC10

Performance of a Full Silicon Tracker at CLIC - C. Grefe and B. Pié

Tracker Layout (old)

Tracker layout: side view.

Impact parameter resolution (D0) versus angle and momentum (fast and full simulations).

[Dominik Dannheim]

IWLC10

Performance of a Full Silicon Tracker at CLIC - C. Grefe and B. Pié