## Measurement of Little Higgs Parameters at ILC and the DM Relic Density

### '10 10/21 Y. Takubo (Tohoku U.)

E. Asakawa(Meiji-gakuin U.), K. Fujii(KEK),T. Kusano(Tohoku U.), S. Matsumoto(Toyama U.),R. Sasaki(Tohoku U.), H. Yamamoto (Tohoku U.)

# Little hierarchy problem

There are two predictions of the energy scale for new physics ( $\Lambda$ ).

- $\Lambda < 1$  TeV : <10% fine tuning of Higgs mass.
- $\Lambda > 10$  TeV : EW precision measurements > The global fit of the EW parameters.  $(\Gamma_Z, M_W/M_Z, \sin^2\theta_W, ...)$



 $\rightarrow$  There is a discrepancy between two predictions.

Some physics models are proposed to solve little hierarchy problem.

→ Little Higgs model (with T-parity)

# Little Higgs mechanism

- Higgs is a pseudo NG boson of a global symmetry of SU(5).
- The symmetry breaks to SO(5) at Λ ~ 10 TeV.
  > VEV: f ~ 1TeV
  - >  $[SU(2)_L \times U(1)_Y]$  is a subgroup of SO(5).
- The little Higgs partners contribute to cancel quadratic divergent term of  $M_h$  at 1-loop level.
  - > The new physics at 1 TeV is not necessary.
- $\rightarrow$  Little hierarchy problem can be solved.



 $U(1)_{\rm Y}$ 

 $SU(5): [SU(2) \times U(1)]^2$ 

SO(5): SU(2)<sub>L</sub> x U(1)<sub>Y</sub>

f~1TeV

# Importance of heavy gauge bosons

#### Heavy gauge bosons

• The heavy gauge bosons appears as the little Higgs partners of SM gauge bosons.

 $\succ \gamma, Z, W \leftrightarrow A_H, Z_H, W_H$ 

- > The masses have information of VEV(f).
- A<sub>H</sub> becomes stable, requiring T-parity.
  - >  $A_H$  is a dark matter candidate.
- $\rightarrow$  VEV and abundance of the dark matter can be evaluated by measurement of heavy gauge bosons.

Sensitivity of ILC to the heavy gauge bosons was studied.



# Parameter choice for simulation study

 $A_H$ ,  $W_H$ , and  $Z_H$  can be observed at ILC.

#### Constraint by WMAP result

- The dark matter density was determined by WMAP.
  - $\sim \Omega h^2 = 1.119 \pm 0.009$
- Annihilation xsec of A<sub>H</sub> ~ F(M<sub>h</sub>, f)
  > M<sub>h</sub> and f are restricted by Ωh<sup>2</sup>.

### Parameters for this study

- f: 580GeV
- M<sub>h</sub>: 134GeV
- M<sub>AH</sub>: 81.9GeV
- M<sub>WH</sub>: 368GeV

• M<sub>ZH</sub>: 369GeV

#### Annihilation processes of $\mathbf{A}_{\mathbf{H}}$





# Analysis modes

According to the beam energy at ILC, two analysis modes were selected.

Analysis modes

•  $A_H + Z_H$  @  $E_{CM} = 500 \text{ GeV}$ > xsec: 1.91 fb >  $Z_H \rightarrow H + A_H$ 



•  $W_{H^{+}} + W_{H^{-}} @ E_{CM} = 1 \text{ TeV}$ > xsec: 277 fb >  $W_{H} \rightarrow W + A_{H}$ 



# Simulation study

- Event generator
  - > Signal: Physsim
  - > BG: MadGraph and Physsim
- ISR, FSR, beamstrahlung, and beam energy spread:
  - ≻ E<sub>CM</sub>=500GeV: not considered.
  - > E<sub>CM</sub>=1TeV: considered.
- The fast-simulator for GLD was used.



#### Event display of a W<sub>H</sub>W<sub>H</sub> event



### A<sub>H</sub>Z<sub>H</sub> at E<sub>CM</sub>=500GeV

# Signal v.s. B.G. at E<sub>CM</sub>=500GeV

### Signal v.s. BG

- Signal:  $A_H Z_H \rightarrow A_H A_H hh (h \rightarrow bb)$ 
  - > Xsec: 1.05fb
  - > BR( $h \rightarrow$  bb): 55.3% for Mh=134GeV
- BG: vvh and Zh are serious BG.
  - >  $vvh \rightarrow vvbb: 34fb$
  - >  $Zh \rightarrow vvbb: 5.57fb$
- The selection cut was applied.
  - > 100GeV< Mh <140GeV
  - > misspt>80GeV/c

b-tagging



The number of events after the selection cut was checked.



## Event selection at E<sub>CM</sub>=500GeV

#### Event selection

- Assumption of b-tag performance
  - > 80% efficiency for b-jet
  - > 10% mis-identification of light quarks
- Signal significance: 3.7

#### $\rightarrow$ We will obtain the indication of new physics at E<sub>CM</sub>=500GeV.

| Process      |              |                          | xsec(fb) | No cut 10 | $0 < m_h < 140$ | $P_{\rm t}^{\rm miss} > 80$ | b-tag |
|--------------|--------------|--------------------------|----------|-----------|-----------------|-----------------------------|-------|
| $A_H Z_H$ -  | → 1          | $A_H A_H b \overline{b}$ | 1.05     | 525       | 488             | 425                         | 272   |
| $\gamma Z$ – | ÷            | $\gamma b \overline{b}$  | 1,200    | 600,000   | 19,296          | 70                          | 45    |
| tt –         | → N          | $V^+W^-b\bar{b}$         | 496      | 248,000   | 859             | 413                         | 264   |
| $\nu\nu Z$ – | <del>)</del> | $\nu \nu b \bar{b}$      | 44.3     | 22,150    | 635             | 261                         | 167   |
| vvh -        | <del>.</del> | $\nu\nu b\bar{b}$        | 34.0     | 17,000    | 15,170          | 5,247                       | 3,359 |
| ZZ –         | <del>)</del> | $\nu\nu b\bar{b}$        | 25.5     | 12,750    | 404             | 277                         | 178   |
| Zh -         | ÷            | $\nu\nu b\bar{b}$        | 5.57     | 2,785     | 2,390           | 2,196                       | 1,406 |
| Total        | 1.65         |                          |          | 860,105   | 38,727          | 8,464                       | 5,419 |

# Determination of A<sub>H</sub> & Z<sub>H</sub> mass

Masses of  $A_H$  and  $Z_H$  are determined by using edges of  $E_h$  distribution.

•  $M_{AH}$  : 83.2 ± 13.3 GeV

•  $M_{ZH}$  : 366.0 ± 16.0 GeV

Measurement accuracy

• M<sub>AH</sub> : 16.2%

• M<sub>ZH</sub> : 4.3%

It is possible to determine masses of  $A_H$  and  $Z_H$  at  $E_{CM}$ =500GeV.



### W<sub>H</sub>W<sub>H</sub> at E<sub>CM</sub>=1TeV

# Event selection at E<sub>CM</sub>=1TeV

- Xsec of  $W_H W_H$  is very large, comparing to the SM background.
- The hadronic decay modes of W was selected as the signal.

 $> W_H W_H \rightarrow A_H A_H W W \rightarrow A_H A_H q q q q$ 

• SN of 4.2 was obtained with simple selection cuts.

 $\rightarrow$  The confident signal significance will be obtained at E<sub>CM</sub>=1TeV.

|                                       | Xsec(fb) | No cut    | Ew<500GeV | χ <sup>2</sup> <26 | missp <sub>T</sub> >84GeV |
|---------------------------------------|----------|-----------|-----------|--------------------|---------------------------|
| $W_H W_H \rightarrow A_H A_H q q q q$ | 106.5    | 53,258    | 53,045    | 43,171             | 37,560                    |
| WW→qqqq                               | 1773.5   | 886,770   | 757,047   | 271,409            | 306                       |
| eeWW→eeqqqq                           | 464.9    | 282,500   | 269,075   | 150,957            | 23                        |
| evWZ→evqqqq                           | 25.5     | 12,770    | 12,271    | 7,033              | 3,696                     |
| $Z_H Z_H \rightarrow A_H A_H q q q q$ | 99.5     | 49,741    | 49,609    | 4,346              | 3,351                     |
| vvWW→vvqqqq                           | 6.5      | 3,227     | 3,203     | 2,373              | 1,486                     |
| Total                                 |          | 1,235,008 | 1,091,205 | 436,118            | 8,862                     |

## Determination of A<sub>H</sub> & W<sub>H</sub> mass

Masses of A<sub>H</sub> and W<sub>H</sub> are determined by using edges of E<sub>W</sub> distribution.

- $M_{AH}$  : 82.46 ± 1.18 GeV
- $M_{WH}$  : 367.8 ± 0.83 GeV

- Measurement accuracy • M<sub>AH</sub> : 1.4%
- M<sub>WH</sub> : 0.2%

Masses of  $\mathbf{A}_{\mathbf{H}}$  and  $\mathbf{W}_{\mathbf{H}}$  can be determined

with precision of 1% level at  $E_{CM}$ =1TeV.



### Determination of VEV & $\Omega h^2$

# Sensitivity to VEV(f)

Sensitivity to VEV(f) was estimated by measurement accuracy of the heavy gauge bosons.

•  $M_{AH} \sim sqrt(0.2)$  g' f,  $M_{ZH, WH} \sim g$  f

 $\begin{cases} \bullet f = 576.0 \pm 25.0 (4.3\%) @ 500 \text{GeV} \\ \bullet f = 579.8 \pm 1.1 (0.2\%) @ 1 \text{TeV} \end{cases}$ 



# Sensitivity to relic abundance

Finally, sensitivity to the relic abundance was investigated.



# Summary

- Little Higgs model with T-parity gives solution for the little hierarchy problem.
- ILC has excellent sensitivity to the Little Higgs parameters.
  - > M<sub>AH</sub>: 16.2%, M<sub>ZH</sub>: 4.3% @ 500 GeV
  - > M<sub>AH</sub>: 1.4%, M<sub>WH</sub>: 0.2% @ 1TeV
  - > VEV (f): 4.3% @500GeV, 0.2% @1TeV
- The relic abundance of  $A_H$  can be determined with the similar sensitivity of PLANK.
  - >~10% @ 500GeV, ~1% @ 1TeV
- The paper on this study was published by PRD.
  - Phys. Rev. D79, 075013 (2009)/arXiv:0901.1081[hep-ph]

# Spin of W<sub>H</sub> & helicity of W

• The angular distribution of  $W_H$  is different from that of spin-0.

 $\rightarrow$  We can distinguish from spin-0 particles.

• Angular distribution of jets in W rest-frame shows the contribution of longitudinal component.

 $\rightarrow$  The coupling is confirmed to arise from the symmetry breaking.





# Gauge charge of W<sub>H</sub>

### <u>W<sub>H</sub> coupling</u>

- $W_H$  has SU(2) charge without U(1) charge.
- At high energy, Z~W<sup>3</sup> almost couples to left-handed.



 $\gamma, Z \leq W_{\rm H}$   $e \rightarrow W_{\rm H}$  $\gamma, Z \leq W_{\rm H}$   $+ \gamma_{\rm H}$ 

Zero xsec. for fully right-handed polarization can be observed.

xsec. and the beam polarization.

 $\rightarrow$  At ILC, we can confirm that W<sub>H</sub> has no U(1) charge.