

CALICE Tungsten HCAL Prototype status

Erik van der Kraaij CERN LCD

International Workshop on Linear Colliders 2010, October 21

WHCAL experimental setup

CALICE hadronic calorimeter installed at CERN with:

- 30 plates of 1 cm thick tungsten as absorber —
- 3x3 cm scintillator tiles as active material with SiPM for readout
- Alternative detector technologies will join in parallel with the normal data taking

Now being commissioned in a muon beam and will move in November to the T9 testbeam line at the CERN-PS (1-10 GeV).

Goal of the test:

- Prove the technology of using tungsten as absorber in an HCAL
- Validate hadronic shower simulations

Installation in PS - T7 area

Muon flux originating from pions in a PS beamline ~30m away - muon beam size ~1m - Energy 1-10 GeV

> Two 50x50 cm² muon triggers installed

Three PCs for:DAQ

- Analysis
- Power control

- 2 sets of trigger coincidences:
 - $-10x10 \text{ cm}^2$
 - 50x50 cm² (one in front, one behind stack. Not on picture)
- 2 delay wire chambers commissioned. 3rd has now also been installed.

- One set of 8x1 cm² to be used for finer measurements
- For now not in line with beam, but can easily be moved

- The wire chambers have a delay line running back & forth from left to right, and a line running back & forth from up to down.
- The chamber gives four signals: time delay from the left, right, up and down sides.

LEFT-RIGHT (one chamber)

Tested correlation in time of hits from the left and right signal:

- As a particle hit is read out both sides, then the sum of the two distances (and hence times if the velocity is linear) should be a constant.
- Chambers are working correctly

- Reconstructing of tracks made difficult by multiple hits.
- Time difference between 1st and 2nd hit peaks at 200 ns; most probably reflection.
- Will keep the time windows small to minimize #double hits on one channel
- 3rd wire chamber is being installed & commissioned at the moment. This will reduce combinatorics.

Arrival time for multiple hits on one channel

Muon spills come in ~300 ms window, every 45 sec.

- Relative timing measured and adjusted where needed for triggers and wire chambers.
- Using scintillator triggers:
 - Coincidence of the two 10x10 cm² results in ~350 counts/spill
 - Coincidence of the two 50x50 cm² results in ~1000 counts/spill

• DAQ Rate: 8 Hz (1 ms deadtime / event)

Installation done 30 Aug. – 3 Sept.

- Noise level consistent with previous installations in testbeams at CERN (2006/2007) and FNAL (2008)
- Large number of dead channels in modules 24/29/30.
 (definitions: module = active layer, channel = 1 scintillator tile with SiPM)
- Not yet clear why, the channels sometimes recover.
- These channels were known from last FNAL runs to be malfunctioning
- Yet during pre-assembly at DESY the last few months they showed no problems.
- Plans for repair at CERN
 before November testbeam

SiPM response depends on temperature and voltage
→ Temperature sensors
→ LED monitoring system

- One LED illuminates 18 SiPMs and one PIN to monitor the LED signal.
- Functionalities of the LED system:
 - Gain calibration (see later)
 - Provide full dynamic range for checking the SiPM response function

CMB: Calibration and Monitoring board

T: Temperature sensor

LED system tested and operational, except for one module (#20). This CMB has been removed for repair.

- The signal from the SiPM is readout after amplifier & shaper, at its maximum value. → Need to determine the delay values ('hold value')
- This has been done already at previous testbeams.
 - Compared with those results the delay values for all modules should differ by the same amount:

GREEN distribution is results from previous testbeam. RED and BLUE are two runs taken this month with the two trigger setups

→ Delay (induced by trigger setup) is similar for all modules.

Measured amplitude is converted to digital counts: #ADC

• gain = #ADC per pixel

Gain calibration procedure:

- use the LED system and take spectra at low intensity light for all channels
- fit single photon spectra
- Gain is difference between 2 single photon peak
- Gain values extracted and consistent with previous testbeam
- Extraction efficiency in last runs at 95%, almost the level it was for previous testbeam.

calibrated # channels / total # channels:

- Selecting straight tracks, and applying calibration from 2007, a single channel results in →
- Each entry is the energy deposited, expressed in MIP energy as defined in 2007
 - Small noise distribution
 - Fit convolution of a Landau and a Gauss distribution:
 - $A_{MIP}=1.074\pm0.013\ mip$

- Calibration from 2007 looks reasonable
- Temperature corrections not yet applied to data

Conversion from signal to energy takes more steps than shown – see talk by Zalesak later.

- Calorimeter installed and operational
 - LED system operational (apart from 1 CMB)
 - Repair of 3 modules will be done before moving to T9
- Wire chambers are commissioned
- Trigger system timed, DAQ rate ~8Hz.
- Data transfer, conversion & analysis in progress
 - First results consistent with previous testbeam results
 - Gain calibration extraction efficiency at 95%
- Beginning of November the entire setup will be lifted to the other side of the hall to be placed in PS testbeam.

Backup

One module (1 m²) consists of 216 scintillator tiles of different sizes, with for each tile one SiPM measuring the light.

- SiPM signal is the sum of signals from fired pixels.
 - With limited number of pixels and recovery time (20-500 ns) this result in a non-linear response curve

		Thu 21 Oct	Fri 22 Oct	Sat 23 Oct	Sun 24 Oct	Mon 25 Wk43	Tue 26 Oct	Wed 27 Oct	Thu 28 Oct	Fri 29 Oct	Sat 30 Oct	Sun 31 Oct	Mon 1 Wk44	Tue 2 Nov	Wed 3 Nov	Thu 4 Nov	Fri 5 Nov	Sat 6 Nov	Sun 7 Nov	Mon 8 Wk45	Tue 9 Nov	Wed 10 Nov	Thu 11 Nov	Fri 12 Nov	Sat 13 Nov	Sun 14 Nov	Mon 15 Wk46	Tue 16 Nov	Wed 17 Nov	Thu 18 Nov	Fri 19 Nov	Sat 20 Nov	Sun 21 Nov	Mon 22 Wk47
Mac							TI	81 H <mark>U</mark>	B 8 MD			8	E	BIG	a MD		8	B WE		82 /E <mark>D</mark>	3 24 D MD					8 2 TH	020 1UN	8 ጋ	3 D					
EAST HALL	T7	8h M Glaser					ро	ssi	bl	e repair						Irra			diation															
	Т8	8h L N	leme	enov											1	、 D			IRAC															
	Т9	8h E Vallazza								FÆ				TOP	a Br W 7	3h N Klempt													0	CALI	CE	-WH	CAI	-
	T10	8h C Cecchi								SUPERB				n di Ma	auro									AL	ICE	-то	F A	า di Ma	au <mark>ro</mark>		AL	ICE-	TRE	2
-	T11	8h J Kirkby														Cl			OUD															
For fu	or further information contact the SPS/PS-Coordinator																																	
-																	-																	

W-AHCAL move to T9

- W-AHCAL will "fly" to T9 on the 3rd of November
- After commissioning, official CALICE testbeam starts on the 6th of Nov.