IWLC2010 International Workshop on Linear Colliders 2010

C

FEDERALE DE LAUSANN

Highlights from the Commissioning of **the PHIN Photoinjector**

Öznur Mete, CERN/EPFL for the PHIN Team

Outline

Why a photoinjector?

▶A photoinjector as an option for electron sources

High brightness electron beam,

High QE semiconductor cathodes, short bunches

The time structure of the electron

beam easily manipulated by coding

No requirement for the additional bunching system,

▶Compactness

Elimination of the satellite bunch production

Low transverse emittance

▶Laser spot size and shape can be optimized to obtain a low emittance

As a conclusion from the ICFA Future Light Sources Conference http://www-conf.slac.stanford.edu/icfa2010/

▶Low thermal emittance

Nominal Case Smallest contribution to the total beam emittance of PHIN

Kinetic energy of the electrons that are emerging from the Cs2Te cathode surface = 0.55 eV

PHIN Photoinjector @ IWLC2010 – 21 October 2010

contribution to the total beam emitt		
Parameter	Model	
Space Charge Induced Emittance (mm mrad)	10.3	
RF Induced Emittance (mm mrad)	1.33	
Thermal Emittance (mm mrad)	0.42)
Total Beam Dynamics Emittance (mm mrad)	10.4	
Typical e^- Beam Size (mm)	1	
Angular Beam Divergence (mrad)	7.4	
	Parameter Space Charge Induced Emittance (mm mrad) RF Induced Emittance (mm mrad) Thermal Emittance (mm mrad) Total Beam Dynamics Emittance (mm mrad) Typical e ⁻ Beam Size (mm) Angular Beam Divergence (mrad)	ParameterModelSpace Charge Induced Emittance (mm mrad)10.3RF Induced Emittance (mm mrad)1.33Thermal Emittance (mm mrad)0.42Total Beam Dynamics Emittance (mm mrad)10.4Typical e ⁻ Beam Size (mm)1Angular Beam Divergence (mrad)7.4

the laser temporal structure. Marta Csatari's Talk

 $\epsilon_{x,y,n}[mm\,mrad] \approx 1\mu m \sqrt{Q[nC]}$

IWLC2010 - WG6 Introduction to the PHIN Photoinjector

PHIN Photoinjector @ IWLC2010 - 21 October 2010

IWLC2010 - WG6 Introduction to the PHIN Photoinjector

PHIN Photoinjector @ IWLC2010 - 21 October 2010

IWLC2010 - WG6 Introduction to the PHIN Photoinjector

PHIN Photoinjector @ IWLC2010 - 21 October 2010

O.Mete et al.

Charge Production Studies

Segmented Dump

6

- For each curve micropulse energy is constant
- Macropulse length is increasing for each data point
- Integrated charge increases linearly with the macropulse length
- No saturation effect from the macropulse

- Charge measurement on the FCT (fast current transformer) with respect to the RF phase.
- Measurements were repeated at two different laser energies and also for beam loading and on-crest regimes.

- Fix macropulse length
- Extracted charge saturates with the increasing micropulse energy.

O.Mete et al.

Time-Resolved Measurements

In 2010,

PHIN Photoinjector @ IWLC2010 - 21 October 2010

7

Each data point represents the average of 10 subsequent measurements at the same gate position.
Average emittance along the pulse train has been measured as 7.1 mm mrad.

The average fluctuation along the pulse train has been measured as 1.13 mm mrad (16%).

Time-Resolved Measurements

▶ Each data point represents the average of 10 subsequent measurements at the same gate position.

The average statistical fluctuation of the beam size along the pulse train - (x)0.16/(y)0.38 mm (6% / 12%).
 Average emittance along the pulse train - 14 mm mrad.

The av. statistical fluctuation of the transverse normalized emittance along the pulse train – 1.66 mm mrad (12%).

PHIN Photoinjector @ IWLC2010 - 21 October 2010 10

Measurements at Full train

11

Stability

Parameter		
Laser Stabil		
Intensity (%)	1.66	
Spot Size (mm) (x $/$ y)	0.064 / 0.053	
Pulse Length (ps)	0.41	(6%)
RF Stabili	ty	
Phase (^o per kV)	3	
Amplitude (‰)	1	

DB Tolerances				
AKSOY'S TAIK PHIN	Spec <	0.25%		
RF power error Beam current error RF phase error Incoming beam phase error	(%) (%) (deg) (deg)	0.2 0.2 0.05 0.1		
DB Bunch Length DB Energy	(%) (%)			

Still an open issue... No reason to be pessimistic.

12

The effect of the ±1% laser spot size variation on the beam parameters.

Parameter	Variation (%)
Beam Size	± 2
Transverse Normalized Emittance	± 0.3

The effect of the $\pm 1\%$ phase variation on the beam parameters.

Parameter	Variation (%)
Energy	$+0.67 \ / \ -0.98$
Energy Spread	± 3.6
Bunch Length	± 0.63
Longitudinal Normalized Emittance	± 0.9

The effect of the $\pm 1\%$ charge variation on the beam parameters.

Parameter	Variation (%)
Transverse Normalized Emittance	± 0.6
Longitudinal Normalized Emittance	±0.8
Energy Spread	± 0.9
Bunch Length	± 0.3

PHIN Photoinjector @ IWLC2010 – 21 October 2010

The PHIN specifications have been successfully demonstrated in the end of the June 2010 run.

			Theoretical limit = 4.5 nC
Parameter	Specification	Achieved	@85 MV/m and 1 mm laser s
Charge per Bunch (nC)	2.33	4.4	
Charge per Train (nC)	4446	>4446	
Train Length (ns)	1273	1300	
Current (A)	3.5	~3.4	
Normalized Emittance (mm mrad)	<25	14	
Energy Spread (%)	<1	0.7	
Energy (MeV)	5.5	5.5	
UV Laser Pulse Energy (nJ)	370	400	
Charge Stability (%)	<0.25 rms	0.8-2.4	
Cathode	Cs_2Te	Cs_2Te	
Quantum Efficiency (%)	3	18 (peak)	
RF Gradient (MV/m)	85	85	
RF Frequency (GHz)	2.99855	2.99855	
Micropulse Repetition Rate (GHz)	1.5	1.5	
Macropulse Repetition Rate (Hz)	1-5	1-5	

PHIN Photoinjector @ IWLC2010 - 21 October 2010 13

C

The PHIN specifications have been successfully demonstrated in the end of the June 2010 run.

Parameter	Specification	Achieved
Charge per Bunch (nC)	2.33	4.4
Charge per Train (nC)	4446	>4446
Train Length (ns)	1273	1300
Current (A)	3.5	~3.4
Normalized Emittance (mm mrad)	<25	14
Energy Spread (%)	<1	0.7
Energy (MeV)	5.5	5.5
UV Laser Pulse Energy (nJ)	370	400
Charge Stability (%)	<0.25 rms	0.8-2.4
Cathode	Cs_2Te	Cs_2Te
Quantum Efficiency (%)	3	18 (peak)
RF Gradient (MV/m)	85	85
RF Frequency (GHz)	2.99855	2.99855
Micropulse Repetition Rate (GHz)	1.5	1.5
Macropulse Repetition Rate (Hz)	1–5	1–5

PHIN Photoinjector @ IWLC2010 - 21 October 2010 13

Cl

The PHIN specifications have been successfully demonstrated in the end of the June 2010 run.

Specification	Achieved	Theoretical limit @85 MV/m and 1 mr	= 4.5 nC n laser spot
2.33	4.4		
4446	>4446	Amplitude	Pointing
1273	1300	Electrical noise/power supplier noise	Water cooling system
3.5	~3.4	• Pumping diodes	Air conditioning (temperature variation+
<25	14 • Seed source (osc+preamp)	Seed source (osc+preamp)	Vibration
<1	0.7	Phase coding	Airflow in beam transport
5.5	• Pointing (amplification + harmonic stages)	 Pointing (amplification + harmonic stages) 	Lack of relay imaging
370	400	Thermal drifts	
<0.25 rms	0.8-2.4	1echanical vibration	
Cs_2Te	Cs_2Te		
3	18 (peak)		csatari's Talk
85	85	Mo	rta CSC.
2.99855	2.99855		
1.5	1.5		
1–5	1-5		
	Specification 2.33 4446 1273 1273 3.5 <25 <1 <25 <1 5.5 370 <0.25 rms <25 370 <0.25 rms <2.92855 <2.998555 <1.5 <1.5 <1.5 <1.5	SpecificationAchieved 2.33 4.4 4446 54446 4446 54446 1273 1300 3.5 -3.4 425 14 425 14 41 0.7 5.5 5.5 370 400 $\sqrt{0.25 \text{ rms}}$ $0.8-2.4$ Cs_2Te Cs_2Te 3 18 (peak) 85 85 2.99855 2.99855 1.5 1.5	Specification Achieved Theoretical limit @85 MV/m and 1 mm 2.33 4.4 Amplitude 4446 >4446 Amplitude 1273 1300 •Electrical noise/power supplier noise 3.5 ~3.4 •Pumping diodes <25 14 •Seed source (osc+preamp) <1 0.7 •Phase coding <5.5 5.5 harmonic stages) 370 400 •Thermal drifts Cs_2Te Cs_2Te 3 3 18 (peak) 85 85 85 2.99855 2.99855 1.5 1.5 1.5 1.5

Cl

Specification	Achieved	Theoretical limit @85 MV/m and 1 mr	= 4.5 nC m laser spot
2.33	4.4		
4446	>4446	Amplitude	Pointing
1273	1300	Electrical noise/power supplier noise	Water cooling system
3.5	~3.4	• Pumping diodes	Air conditioning (temperature variation+
<25	14	Seed source (osc+preamp)	airflow)
<1	0.7	Phase coding	Airflow in beam transport
5.5	5.5	 Pointing (amplification + harmonic stages) 	 Lack of relay imaging
370	400	Thermal drifts	
<0.25 rms	0.8-2.4	A feedback stabiliz	ation system
Cs_2Te	Cs_2Te	is planned to impro	ove
3	18 (peak)	the charge stability	y. Ceatari's Talk
85	85	MC	arta Csalo
2.99855	2.99855		
1.5	1.5		
1-5	1–5		
	Specification 2.33 4446 1273 3.5 .25 .1273 .25 .1273 .25	Specification Achieved 2.33 4.4 4446 >4446 1273 1300 1273 1300 3.5 ~3.4 425 14 41 0.7 5.5 5.5 370 400 402 0.8-2.4 60.25 rms 0.8-2.4 6252 re 6.8-2.4 18 (peak) 85 85 85 2.99855 2.99855 1.5 1.5 1.5 1.5	SpecificationAchievedTheoretical limit $@85$ MV/m and 1 mi2.334.4 $@85$ MV/m and 1 mi2.334.4Amplitude4446>4446Amplitude12731300*Electrical noise/power supplier noise3.5~3.4Pumping diodes<2514Seed source (osc+preamp)<10.7*Phase coding<10.7*Phase coding5.55.5harmonic stages)370400*Thermal drifts<0.25 rms0.8-2.4A feedback stability is planned to impro- the charge stability

Cl

THANK YOU FOR YOUR ATTENTION ...

THANK YOU FOR YOUR ATTENTION ...

... and for the 3 years of fun and experience!!

IWLC2010 - WG&BACKUP - A 1 GHz RF Gun for Drive Beam

PHIN Photoinjector @ IWLC2010 – 21 October 2010

15