Impact of polarized positrons for top/QCD and electroweak physics

Gudrid Moortgat-Pick Hamburg University

- Introduction
- SB2009
- Summary polarized beams in top/qcd physics
- Summary polarized beams in ew theories
- Summary and open questions/ideas

Introduction

- Physics case for polarized e⁻ and e⁺
 - Comprehensive overview, hep-ph/0507011, Phys.Rept., 460 (2008)
 - See also executive summary on:

www.ippp.dur.ac.uk/LCsources/

- Polarized beams required to
 - Analyze the structure of all kinds of interactions
 - Improve statistics: enhance rates, suppress background processes
 - Get systematic uncertainties under control
- Discoveries via deviations from SM predictions in precision measurements!
 - Important in particular at √s≤ 500 GeV!

Why are polarized beams required?

- Please remember:
 - excellent e- polarization ~78% at SLC:
 - led to best measurement of $\sin^2\theta = 0.23098 \pm 0.00026$ on basis of L~10³⁰ cm⁻²s⁻¹
- Compare with results from unpolarized beams at LEP:
 - $-\sin^2\theta = 0.23221 \pm 0.00029$ but with L~ 10^{31} cm $^{-2}$ s $^{-1}$

polarization can even compensate order of magitude in luminosity for specific observables!

But what are the precision requirements?

Reminder: requirements for precision frontier'

ICFA Parameter Group for a future LC:

- 'Scope Document no.1' (2003) and 'no.2' (2006): baseline
 - → 'full luminosity of 2 x 10³⁴cm⁻²s⁻¹
 - 'beam energy stability and precision below tenth of percent level.'
 - 'Machine interface must allow measurements of beam energy and diff. lumi spectrum with similar accuracy.'
 - 'electron beams with polarisation of at least 80% within whole energy range.'

Options:

- "e⁺ polarisation ~50% in whole energy range wo sign. loss of lumi...., Reversal of helicity ... between bunch crossings.'
- GigaZ: e⁺ polarisation+frequent flips essential; energy stability+calibration accuracy below tenth of percent level.'

Comparison:

- RDR baseline: P(e+)~30% up to 45% (w/o collimator)
- P(e+)=22% at √s=500 GeV
 P(e+)=31% at √s=200 GeV

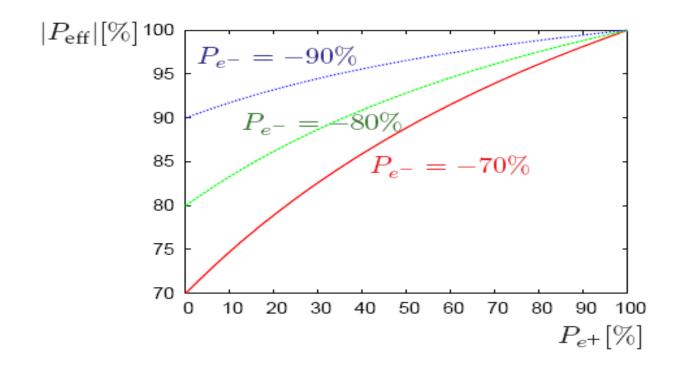
Is such a low degree appropriate for physics goals?

- Concentrate on few examples
 - For new SB2009 outline
 - Weight it w.r.t. LHC expectations

Physics: pol.cross sections in general

Polarized cross sections can be subdivided in:

$$\begin{split} \sigma_{P_{e^-}P_{e^+}} &= & \frac{1}{4} \big\{ (1 + P_{e^-})(1 + P_{e^+}) \sigma_{\mathrm{RR}} + (1 - P_{e^-})(1 - P_{e^+}) \sigma_{\mathrm{LL}} \\ &+ (1 + P_{e^-})(1 - P_{e^+}) \sigma_{\mathrm{RL}} + (1 - P_{e^-})(1 + P_{e^+}) \sigma_{\mathrm{LR}} \big\}, \end{split}$$


 σ_{RR} , σ_{II} , σ_{RI} , σ_{IR} are contributions with fully polarized L, R beams.

In case of a vector particle only (LR) and (RL) configurations contribute:

$$\begin{split} \sigma_{P_{e^{-}}P_{e^{+}}} &= \frac{1 + P_{e^{-}}}{2} \frac{1 - P_{e^{+}}}{2} \, \sigma_{\mathrm{RL}} + \frac{1 - P_{e^{-}}}{2} \frac{1 + P_{e^{+}}}{2} \, \sigma_{\mathrm{LR}} \\ &= (1 - P_{e^{-}}P_{e^{+}}) \, \frac{\sigma_{\mathrm{RL}} + \sigma_{\mathrm{LR}}}{4} \, \left[1 - \frac{P_{e^{-}} - P_{e^{+}}}{1 - P_{e^{+}}P_{e^{-}}} \frac{\sigma_{\mathrm{LR}} - \sigma_{\mathrm{RL}}}{\sigma_{\mathrm{LR}} + \sigma_{\mathrm{RL}}} \right] \\ &= (1 - P_{e^{+}}P_{e^{-}}) \, \sigma_{0} \, \left[1 - P_{\mathrm{eff}} \, A_{\mathrm{LR}} \right], \end{split}$$

Effective polarization

Effective polarization:
$$P_{\text{eff}} = \frac{P_{e^-} - P_{e^+}}{1 - P_{e^+} P_{e^-}}$$

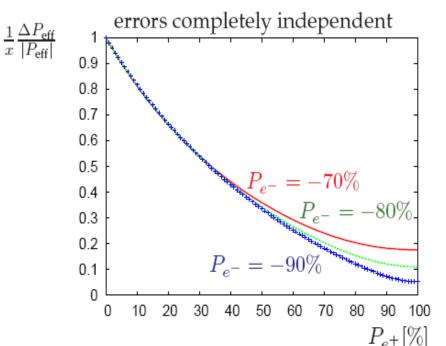
•(80%,60%): P_{eff}=95%, (90%,60%): P_{eff}=97%, (90%,30%): P_{eff}=94%

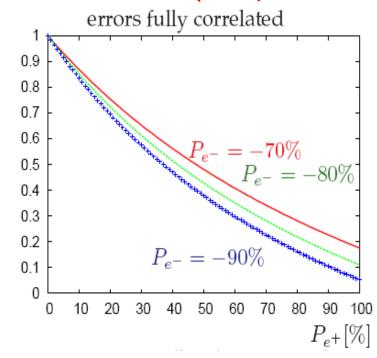
• (80%,22%): P_{eff}= 87%, (90%,22%): P_{eff}= 93%

Relation between P_{eff} and A_{LR}

•How are P_{eff} and A_{LR} related?

$$A_{\rm LR} = \frac{1}{P_{\rm eff}} A_{LR}^{\rm obs} = \frac{1}{P_{\rm eff}} \frac{\sigma_{-+} - \sigma_{+-}}{\sigma_{-+} + \sigma_{+-}},$$


That means:
$$\left| \frac{\Delta A_{\rm LR}}{A_{\rm LR}} \right| \sim \left| \frac{\Delta P_{\rm eff}}{P_{\rm eff}} \right|$$


•With pure error propagation (and errors uncorrelated), one obtains:

$$\frac{\Delta P_{\text{eff}}}{P_{\text{eff}}} = \frac{x}{\left(|P_{e^+}| + |P_{e^-}|\right) \, \left(1 + |P_{e^+}||P_{e^-}|\right)} \, \sqrt{\left(1 - |P_{e^-}|^2\right)^2 P_{e^+}^2 + \left(1 - |P_{e^+}|^2\right)^2 P_{e^-}^2}$$

With
$$x \equiv \Delta P_{e^-}/P_{e^-} = \Delta P_{e^+}/P_{e^+}$$

Gain in accuracy due to P(e+)

- (80%,60): P_{eff} = 95%

 $\Delta A_{LR}/A_{LR} = 0.3$

(90%,60%): P_{eff} = 97%

 $\Delta A_{LR}/A_{LR} = 0.27$

(90%, 30%): P_{eff} =94 %

 $\Delta A_{LR}/A_{LR} = 0.5$

• (80%,22%): $\Delta A_{LR}/A_{LR} = 0.64$

(90%,22%): $\Delta A_{LR}/A_{LR} = 0.64$

Pol. in top/qcd:

Unique access to top ew properties

Process: e+ e- → t t (test of couplings t→ γ, Z)

$$\Gamma^{\mu}_{t\bar{t}\gamma,Z} = ie\{\gamma^{\mu} [F_{1V}^{\gamma,Z} + F_{1A}^{\gamma,Z}\gamma^{5}] + \frac{(p_{t}-p_{t})^{\mu}}{2m_{t}} [F_{2V}^{\gamma,Z} + F_{2A}^{\gamma,Z}\gamma^{5}]\}$$

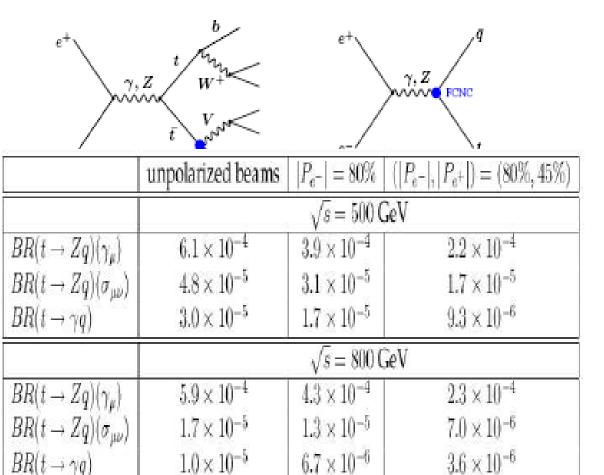
Studies at threshold:

$$v_t = (1 - \frac{8}{3} \sin^2 \theta_W)$$
 via A_{LR}
 $\Rightarrow \Delta A_{LR}/A_{LR} \sim \Delta P_{eff}/P_{eff}$

- → up to per mille level
- Can be improved via polarized beams:

Form factor	SM value	$\sqrt{s} = 500 \mathrm{GeV}$		$\sqrt{s} = 800 \mathrm{GeV}$	
		p = 0	p = -0.8	p = 0	p = -0.8
F_{1V}^Z	ì		0.019		
F_{1A}^Z	1		0.016		
$F_{\scriptscriptstyle 2V}^{\gamma,Z}=(g-2)^{\gamma,Z}{}_{\scriptscriptstyle 1}$	0	0.015	0.011	0.011	0.008
$\mathrm{Re}F_{2A}^{\gamma}$	0	0.035	0.007	0.015	0.004
$\mathrm{Re} d_t^{\gamma} \ [10^{-19}\ \mathrm{e}\ \mathrm{cm}]$	0	20	4	8	2
${\rm Re} F_{2A}^Z$	0	0.012	0.008	800.0	0.007
$\mathrm{Re} d_t^Z \; [10^{-19} \; \mathrm{e} \; \mathrm{cm}]$	0	7	5	5	4
$\operatorname{Im} F_{2A}^{\gamma}$	0	0.010	0.008	0.006	0.005
$\operatorname{Im} F_{2A}^Z$	0	0.055	0.010	0.037	0.007
F_{1R}^W	0	0.030	0.012		
ImF_{2R}^{W}	0	0.025	0.010		

Flavour changing neutral couplings


- Single top:
 - → more sensitive
- top pairs+decays:
 - → better for disentangling
- Results:

vector couplings:

(80%,0)→(80%,45%): ~1.7

tensor couplings:

(80%,0)→(80%,45%): ~1.8

What in top-Higgs physics?

ttH couplings:

```
- Interplay between (1-P_{e}P_{e}) and (1-P_{eff}A_{LR}): (A. Juste in 2005) (-80\%,+60\%): \sigma(ttH)^{Pol}/\sigma(ttH)\sim2.1 \longrightarrow g_{ttH}^{Pol}/g_{ttH}\sim45\% (-80%,0%): \sim1.4 \longrightarrow \sim19\% - 'My' Personal estimates: (-80\%,+30\%): \sim1.7 \longrightarrow \sim31\%
```

- Study was done at √s=500 GeV
 - since A_{LR}~constant up to ~1TeV: factors also valid at ~800 GeV
- more detailed studies absolutely desirable!!!

(-80%,+22%):

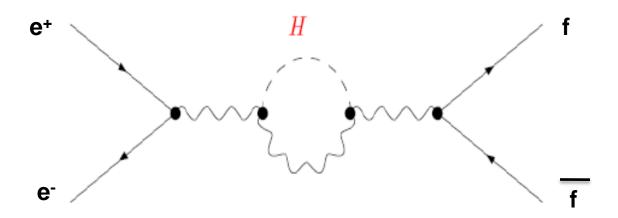
~1.6 ---

~27%

Triple gauge couplings in WW

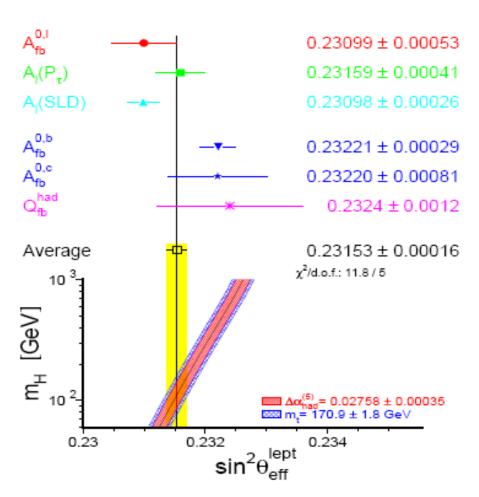
$$\begin{array}{lll} \frac{\mathcal{L}^{WWV}}{ig_{WWV}} & = & g_1^V V^\mu \left(W_{\mu\nu}^- W^{+\nu} - W_{\mu\nu}^+ W^{-\nu} \right) - \kappa_V W_\mu^- W_\nu^+ V^{\mu\nu} - \frac{\lambda_V}{m_W^2} V^{\mu\nu} W_\mu^{+\rho} W_{\rho\nu}^- \\ & + & i g_4^V W_\mu^- W_\nu^+ (\partial^\mu V^\nu + \partial^\nu V^\mu) \\ & + & i g_5^V \varepsilon^{\mu\nu\rho\sigma} \left[(\partial_\rho W_\mu^-) W_\nu^+ - W_\mu^- (\partial_\rho W_\nu^+) \right] V_\sigma \\ & - & \frac{\tilde{\kappa}_V}{2} W_\mu^- W_\nu^+ \varepsilon^{\mu\nu\rho\sigma} V_{\rho\sigma} - \frac{\tilde{\lambda}_V}{2 m_W^2} W_{\rho\mu}^- W^{+\mu}_{} \varepsilon^{\nu\rho\alpha\beta} V_{\alpha\beta}, \\ & - & \frac{\tilde{\kappa}_V}{2} W_\mu^- W_\nu^+ \varepsilon^{\mu\nu\rho\sigma} V_{\rho\sigma} - \frac{\tilde{\lambda}_V}{2 m_W^2} W_{\rho\mu}^- W^{+\mu}_{} \varepsilon^{\nu\rho\alpha\beta} V_{\alpha\beta}, \\ & \text{couplings} \end{array}$$

- Access to triple gauge couplings:
 - Example: rotate to 'optimal observables'
 - use transversely polarized beams as well


$\sqrt{s} = 500 \text{ GeV}$	${ m Im}g_1^{ m L}$	${ m Im}\kappa^{ m L}$	${ m Im}\lambda^{ m L}$	${ m Im}g_5^{ m L}$	\tilde{h}_{-}	\tilde{h}_+	$\operatorname{Im} \lambda^{\mathrm{R}}$	${ m Im}g_5^{ m R}$
No polarization	2.7	1.7	0.48	2.5	11	_	3.1	17
$(P_{e^-}, P_{e^+}) = (\mp 80\%, 0)$	2.6	1.2	0.45	2.0	4.5	_	1.4	4.3
$(P_{e^-}, P_{e^+}) = (\mp 80\%, \pm 60\%)$	2.1	0.95	0.37	1.6	2.5	_	0.75	2.3
$(P_{e^-}^{\rm T}, P_{e^+}^{\rm T}) = (80\%, 60\%)$	2.6	1.2	0.46	2.0	3.7	3.2	0.98	4.4

- gain factor of 1.8 when $(80\%,0) \rightarrow (80\%,60\%)$, (80%,22%) ...?
- •Access to \tilde{h}_{+} with $P_{T}(e-)P_{T}(e+): \longrightarrow (80\%,30\%) ~0.5 (80\%,60\%)$
 - → (80%,22%) ~0.4 (80%,60%) Can be compensated

with P_e=90%!


Why indirect searches at a e⁺e⁻ Z-factory?

Electroweak precision physics

- Sensitivity to quantum effects of new physics
 - All states contribute, including the ones that are too heavy to be produced directly
 - Probing the underlying physics and the properties of new particles

Experimental situation

LEP:

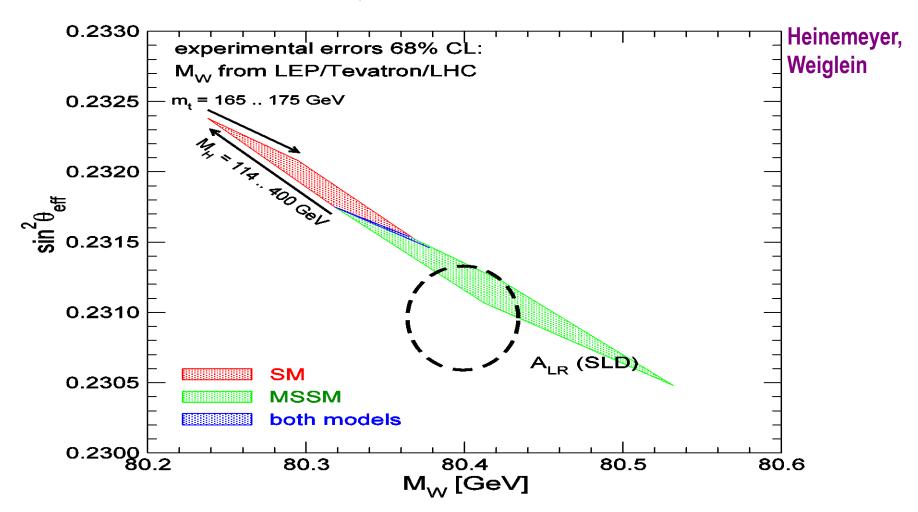
 $\sin^2\theta_{\rm eff}(A_{\rm FB}^{\rm b}) = 0.23221 \pm 0.00029$

SLC:

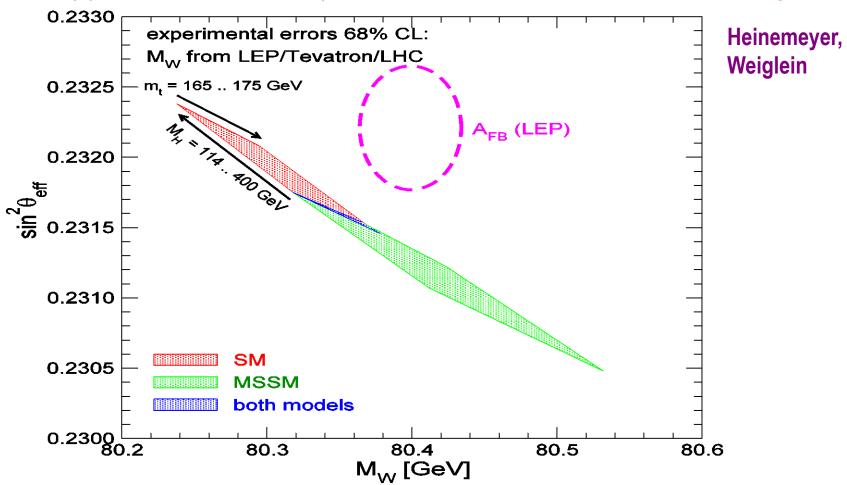
 $\sin^2\theta_{\rm eff}(A_{LR}) = 0.23098 \pm 0.00026$


World average:

 $\sin^2\theta_{\rm eff} = 0.23153 \pm 0.00016$


Large impact of discrepancy between the two most precise measurements

M_W vs. central value $\sin^2\!\theta_{eff}$

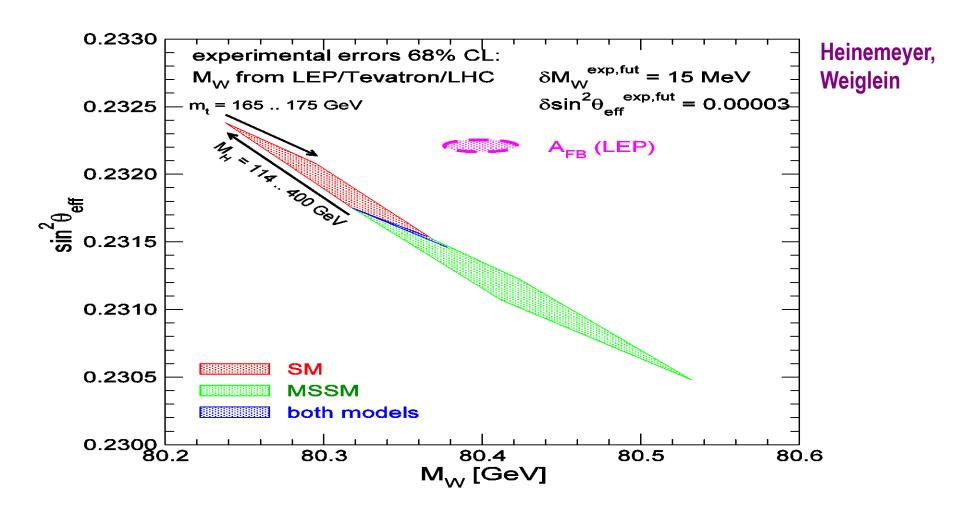

→ Consistent with SM and SUSY

M_W vs. $A_{LR}(SLD)$ -value $\sin^2 \theta_{eff}$

→ not consistent with the SM

M_W vs. A_{FB} (LEP)-value $\sin^2 \theta_{eff}$

- → neither consistent with the SM nor SUSY
- precise $\sin^2\theta_{eff}$ -measurement has the potential to rule out both models


$\sin^2 \theta_{eff}$ at the Z-factory

- Measure both A_{FR} and A_{IR} in same experiment!
 - → with improved precision w.r.t. LEP and SLC
 - → resolve discrepancy and interpret it w.r.t. new physics@LHC
- Which precision should one aim for?
 - Theoretical uncertainties: Δsin2θ_{eff} ho~5x10-5 (currently)
 - Uncertainties from input parameters: Δm_Z , $\Delta \alpha_{had}$, m_{top}
 - $\Delta m_Z = 2.1 \text{ MeV}$: $\Delta \sin^2 \theta_{\text{eff}}^{\text{para}} \sim 1.4 \times 10^{-5}$
 - $\Delta\alpha_{had}$ ~35 (5 future) x 10⁻⁵ : $\Delta\sin^2\theta_{eff}^{para}$ ~12 (1.7 future)x10⁻⁵
 - $\Delta m_{top} \sim 1 \text{ GeV (LHC)}$: $\Delta \sin^2 \theta_{eff}^{para} \sim 3 \times 10^{-5}$
 - $\Delta m_{top} \sim 0.1 \text{ GeV (ILC)}$: $\Delta \sin^2 \theta_{eff}^{para} \sim 0.3 \times 10^{-5}$
 - \rightarrow If Δsin²θ_{eff} ~ 3x10⁻⁵ achievable: big physics impact

$\sin^2 \theta_{eff}$ at the Z-factory

- Measure both A_{FR} and A_{IR} in same experiment!
 - → with improved precision w.r.t. LEP and SLC
 - resolve discrepancy and interpret it w.r.t. new physics@LHC
- Which precision should one aim for?
 - Theoretical uncertainties: Δsin2θ_{eff} ho~5x10-5 (currently)
 - Uncertainties from input parameters: Δm_Z , $\Delta \alpha_{had}$, m_{top}
 - $\Delta m_Z = 2.1 \text{ MeV}$: $\Delta \sin^2 \theta_{\text{eff}}^{\text{para}} \sim 1.4 \times 10^{-5}$
 - yesterday Davier: Δα_{had}~10x 10⁻⁵: Δsin²θ_{eff}^{para}~3.4x10⁻⁵
 - $\Delta m_{top} \sim 1 \text{ GeV (LHC)}$: $\Delta \sin^2 \theta_{eff} \text{ para} \sim 3x10^{-5}$
 - Δm_{top} ~0.1 GeV (ILC): $\Delta sin^2 \theta_{eff}^{para}$ ~0.3x10⁻⁵
 - \rightarrow If Δsin²θ_{eff} ~ 3x10⁻⁵ achievable: big physics impact

Possible result of a Z-factory

→ would unambiguously rule out SM+MSSM!

What's the role of polarization?

- Statistical uncertainty of A_{IR}
 - If only polarized electrons (from source):
 - \rightarrow ΔA_{LR} depends mainly on polarimeter resolution $\Delta P/P \sim 0.5\%-1\%$
 - If both beams are polarized: apply

Blondel scheme: $A_{LR} = f(\sigma_{LR}, \sigma_{RL}, \sigma_{LL}, \sigma_{RR})$

- \rightarrow uncertainty depends on $\Delta\sigma_{II}$, $\Delta\sigma_{IR}$, $\Delta\sigma_{RI}$, $\Delta\sigma_{RR}$ not on $\Delta P/P$!
- →Some running in LL and RR required: ~10% of time

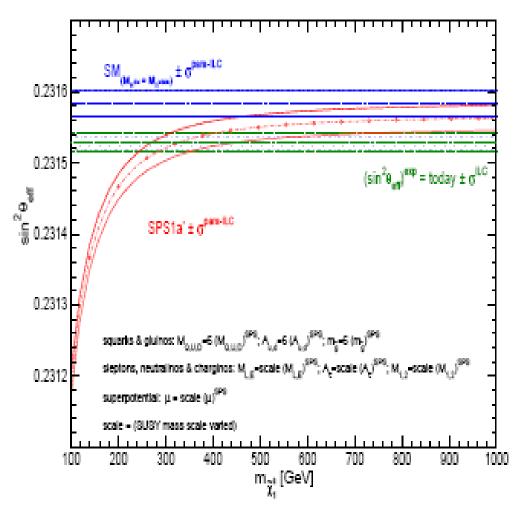
Assume

- $P(e^{-})=90\%$
- Vary P(e⁺)= 22%, 30%, 50%

How many Z's are needed for $\Delta \sin^2\theta_{eff}=3 \times 10^{-5}$ or even 1.3x10⁻⁵?

As comparison: lumi(GigaZ)= 10⁹ Z's in ~70 days

Required polarization & years


- Remember: currently Δsin²θ_{eff}=1.6x10⁻⁴
- $P(e^{-})=90\%$, $\Delta P/P=0.5-1\%$ (for e^{\pm})

	$\Delta ext{sin}^2 heta_{ ext{eff}}$	#Z's	P(e ⁺)
No further progress	1.0x10 ⁻⁴	$4.5x10^7$	0%
<u></u> _	9.8x10 ⁻⁵	9.0x10 ⁸	
3x10 ⁻⁵ : high sensitivity to new	3.0x10 ⁻⁵	1.7x10 ⁹	22%
physics!	3.0x10 ⁻⁵	7.7x10 ⁸	30%
	3.1x10 ⁻⁵	2.3x10 ⁸	50%
'GigaZ': full exploitation only if	1.3x10 ⁻⁵	9.1x10 ⁹	22%
m _{top} =0.1 GeV	1.3x10 ⁻⁵	4.1x10 ⁹	30%
	1.3x10 ⁻⁵	1.4x10 ⁹	50%

- Polarization of both beams is mandatory!
- → GigaZ precision does need high polarization of e[±]!

Help in challenging LHC scenarios?

- Assume only Higgs@LHC but no hints for SUSY:
 - Really SM?
 - Help from $\sin^2\theta_{eff}$?
- If GigaZ precision:
 - i.e. Δm_{top} =0.1 GeV...
 - Deviations measurable
- $\sin^2\theta_{eff}$ can be the crucial quantity!

What else at the Z-pole? Plans...

- Measurement of Γ_I
- Measurement of α_S
- Couplings/mixing of Z'-Z studies
- Flavour physics
- further ideas?

Summary table and gain factor

Comparison with (80%,0): estimated gain factor when

hep-ph/0507011

(80%, 30%)

most (80%, 60%)

		111001 (0070, 0070	(0070,0070)
Case	Effects for $P(e^-) \longrightarrow P(e^-)$ and $P(e^+)$	Gain& Requirement	
Standard Model:			
top threshold	Electroweak coupling measurement	factor 3	gain factor 2
$tar{q}$	Limits for FCN top couplings improved	factor 1.8	gain factor 1.4
CPV in $t\bar{t}$	Azimuthal CP-odd asymmetries give	$P_{e^{-}}^{\mathrm{T}}P_{e^{+}}^{\mathrm{T}}$ required	P ^T _{e-} P ^T _{e+} required
	access to S- and T-currents up to 10 TeV		factor 1.3 worse
W^+W^-	Enhancement of $\frac{S}{B}$, $\frac{S}{\sqrt{B}}$	up to a factor 2	
	TGC: error reduction of $\Delta \kappa_{\gamma}$, $\Delta \lambda_{\gamma}$, $\Delta \kappa_{Z}$, $\Delta \lambda_{Z}$	factor 1.8	
	Specific TGC $\tilde{h}_+ = \text{Im}(g_1^{\text{R}} + \kappa^{\text{R}})/\sqrt{2}$	$P_{e^{-}}^{\mathrm{T}}P_{e^{+}}^{\mathrm{T}}$ required	P ^T _{e-} P ^T _{e+} required
CPV in γZ	Anomalous TGC $\gamma\gamma Z$, γZZ	$P_{e^{-}}^{\mathrm{T}}P_{e^{+}}^{\mathrm{T}}$ required	
HZ	Separation: $HZ \leftrightarrow H\bar{\nu}\nu$	factor 4	gain factor 2
	Suppression of $B = W^+ \ell^- \nu$	factor 1.7	
$t\bar{t}H$	Top Yukawa coupling measurement at $\sqrt{s}=500~{\rm GeV}$	factor 2.5	gain factor 1.6
			I

Summary table and gain factor

Estimated gain factor when only

hep-ph/0507011 P(e+)=30%

Case	Effects for $P(e^-) \longrightarrow P(e^-)$ and $P(e^+)$	Gain& Requirement			
Extra Dimensions:					
$G\gamma$	Enhancement of S/B , $B = \gamma \nu \bar{\nu}$,	factor 3			
$e^+e^- o f ar{f}$	Distinction between ADD and RS models	$P_{e^{-}}^{\mathrm{T}}P_{e^{+}}^{\mathrm{T}}$ required			
New gauge boson Z':					
$e^+e^- o f \bar{f}$	Measurement of Z' couplings	factor 1.5			
Contact interactions:					
$e^+e^- o far{f}$	Model independent bounds	P_{e^+} required			
Precision measurements of the Standard Model at GigaZ:					
Z-pole	Improvement of $\Delta \sin^2 \theta_W$	\sim factor 10			
	Improvement of Higgs bounds	\sim factor 10			
	Constraints on CMSSM parameter space	factor 5			
CPV in $Z o b ar{b}$	Enhancement of sensitivity	factor 3			

Summary and open studies?

- Polarized e[±] beams required for many ew precision studies
- Some effects can only be achieved with polarized e⁻ and e⁺:
 - access to specific triple gauge coulings
 - accuracy in ΔA_{IR} (important for many studies!)
 - precision measurements on $\sin^2\theta_{eff}$ at the **Z-pole**
- New strawman baseline design foresees P(e+)~22%:
 - can be compensated in some cases by achieving P(e-)=90%
 - results in some studies to practically no physics gain!
- 'Cheap and easy' tools for reinstallation of at least 30% should be done (e.g. via implementation of a collimator)
 - Otherwise powerful tool for some studies is lost!
- Further ideas / proposals?