Introduction to L-band Klystrons for the ILC

L-Band Klystron in ILC & Other Project (For Hints of CLIC RF Source)

Shigeki Fukuda (KEK)

SB2009 and HLRF

Construction Cost Profile

RDR(2007) to TDR(2012) - Cost Containment -

- RDR: 6.62 BILCU (4.80 Shared + 1.82 Site Specific) + 14.1 kPerson
- SB2009: 7 working assumptions with ~13% cost reduction
- · One of the most cost-effective assumptions is:
 - 2. <u>A single-tunnel solution</u> for the Main Linacs and RTML, with two possible variants for the High-Level RF (HLRF):
 - Klystron cluster scheme (KCS);
 - Distributed RF Source scheme (DRFS).

RF Source Klystron: 10 MW MBK Modulator: IGBT Pulse Modulator with Bouncer

Single tunnel configuration 1 (KCS)

21 October 2010

Single Tunnel Configuration 2 (DRFS)

ML Single-Tunnel Configuration

- Distribute RF System (DRFS) -

e-ML	282 RF units	Field gradient 31.5 MV/m
e+ML	278 RF units	Energy gain per RF unit 850 MeV
Total	560 RF units	(with 22% tuning overhead)

ML Civil Engineering (DRFS)

RF Source Klystron: 8000 800kW-MA Klystrons (MA: Modulation Anode) Modulator; DC Power Supply MA Modulator

RDR Klystron in ILC 10 MW MBK

Klystron Requirement for ILC

- Long Pulse (1.5ms), High Power (10MW) and High Efficiency (>60%)
- In order to achieve above requirements, M B K (Multi-beam Klystron) was developed as the first case of high power application.
- So far three companies (Thales, CPI and Toshiba) developed MBKs independently.
- Alternative:

SBK (Sheet Beam Klystron) <36-beam Klystron>

Why MBK?

Accelerator Laboratory, KEK ->Relation between perveance and efficiency

Definition of perveance

Symons Equation

 $\eta(\%) = 90 - 20 \times K(\mu perv)$

Empirical relation for efficiency and micro-perveance

More lower perveance beam, more higher efficiency

21 October 2010

Pass to MBK

 Lower perveance for a single beam in order to get the higher efficiency

->lower current, but higher applied voltage (discharge possibility)

- Keeping to allowable low applied voltage, and increase the number of beam-lets
 - -> Complicated gun
 Possible oscillation due to
 the electric gun
 3D design
 Contribution from the axial asymmetric part
 (Thermal expansion for non-axial
 - symmetry)
- Complicated cavity design ->Mode stabilization, Free from Oscillation

MBK of three companies

MBK Comparison with three companies

hiba CPI	
1300 13	300
10	10
150 [·]	150
115 [·]	114
132 ·	131
1.5	1.5
>65 65	-67
47	47
6	6
3.38	3.4
0.56 0.	.57
6	6
<2.1 <	2.1
	hiba CPI 1300 13 10 13 150 13 115 132 132 13 55 65 47 6 3.38 0.56 0.56 0.6 <2.1

Interaction between cavity and beam

TH2108(Thales)	One cylindrical cavity interacts to 7 beamlets. 7 beams couple to
	FM(fundamental mode) -TM010.
VKL8301(CPI)	Input and output cavities are annular cavity which M010.
	Intermediate cavity is cylindrical of TM010.
E3736(Toshiba)	All are annular cavities and TM010 couples to 6 beamlets. Third cavities are harmonic cavity.

10-MW MBK Manufacturing Data

Toshiba has manufactured 4 10MW-MBK for DESY and ILC(KEK/SLAC) And historical data are as follows.

No	ITEM	Output Powe	Input Power	Efficiency	Banc Width	Delivery Date
	Unit	MW	W	%	MHz	
1	DESY-Vertical	10.6	120	70	4.1	2006/March
2	DESY-Horizontal	10.3	120	67	3.6	2007/September
3	KEK/SLAC-Vertica	l 10.1	134	68	3.8	2008/January
4	KEK-Horizontal	10.3	100	67	3.5	2010/March

* Operating condition: beam pulse width of 1.7ms, rf pulse width of 1.5ms and pulse rep. rate of 10Hz

•Vertical MBK in SLAC are running to accumulate the long-term running data.

Full energy and Low-energy running (KCS)

• KCS (Chris Adolphson)

MBK: Toshiba MBK Klystron Data

- 125GeV case
 - NBK
 P0=10MW -> 5MW
 V=117kV -> 94kV
 Eff. 67% > 59-60%
- Modulator

Power=100% -> 58% Pulse Width = 100% -> 47% Near to the 50%

KEK 10MW Horizontal MBK

In FY2009 at KEK, a 10MW horizontal klystron is procured but due to the poor resource, it has not yet operated.

Thales and CPI MBK in DESY

Thales MBK, TH1802, horizontal klystron

CPI MBK, VKL8301B, horizontal klystron

Alternative 1.3GHz RF Source 5 MW Inductive Output Tube (IOT)

10 MW Sheet Beam Klystron (SBK)

Parameters are similar to 10 MW MBK

SLAC

Peak Output Power	5	MW (min)
Average Output Power	75	kW (min)
Beam Voltage	115	kV (nom)
Beam Current	62	A (nom)
Current per Beam	5.17	A (nom)
Number of Beams	12	
Frequency	1300	MHz
1dB Bandwidth	4	MHz (min)
Gain	22	dB (min)
Efficiency	70	% (nom)

Low-voltage 10 MW MBK

voltage 65 kV Current 238A Many beamlet such as 30-40

No pulse transformer

KEK

21 October 2010

10 MW 36-beam Klystron (design only)

cavities for 36 beamlets

Beam and rf mode

Small klystron with 6 beams 21 October 2010

combined IWLC2010

S.Fukuda-L-band Klystron

6 small klystrons are

Klystron for DRFS

DRFS Klystron is a Modulated-anode type klystron or triode type klystron, By changing the voltage of modulated anode electrode relative to cathode, it is possible to change the beam perveance. Beam perveance is strongly related to the RF efficiency. Lower the beam perveance, higher the efficiency is. Disconnection switch for over-current protection M.Anode Modulator Heate At Anode X6.5 in base-line Modulator (backup) DC PS with Droop Klystre Klystron Klystro mpensatic 732 kW 732 kW DC PS Droop Com (backup) Four cavities / klystron Total 52 cavities driven via waveguides without circulators by 13 RF sources operated with a common anomode modulator 100.0 200.0 300.0 400.0 500.0 and a common DC power supply.

RF unit for 3 cryomodules

Data of prototype DRFS Klystrons

Waveform

35

Format

Half Tone **ONCCOLOR** Consent

Filenane

Conpress ion OFF ON Auto Namine

Achieving data

Original design was 750kW but same **Design achieved** More than 800kW.

No. 1 DRFS klystron: 806.7kW at 67.1kV (Micro-perveance=1.15), Eff.=60.1%

813.0kW at 64.2kV (Micro-perveance=1.36), Eff.=57.4%

Two prototype DRFS klystrons Are waiting for test.

1.3 GHz 300kW CW Klystron for ERL Project

	Unit	Design	Achieved
Frequency	MHz	1300	1300
Beam Voltage	kV	<52	49.5
Beam Current	Α	<11	9.74
P Out at Saturation	kW	>270	305
Perveance	uA/V^1.5	0.89	0.89
Efficiency	%	>50	63.2
Gain	dB	>38	39.5

At Toshiba Test

Very stable performance. We can expect more higher efficiency from the data of Po vs Frequency.

So far 63.2% at microperveance of 0.89

Mitsubishi PV-1040 Klystron for SKEKB Injector

Parameter	PV-1040
Frequency (MHz)	1300
Output Power (MW)	40
Beam Voltage (kV)	295
Beam Current (A)	335
Efficiency (%)	40
Perveance (µP)	2.1

Simple Consideration for CLIC Lband RF Source of Driving Beam

Requirements for the CLIC L-band Tube

From Toshiba Quotation,

- High Efficiency of More than 70%
- High Power of more than 40MW
- Long pulse width around 150 us
- Frequency near to ILC Frequency, but need to change a bit (1.3->1.0 GHz))
- Reliability

Technical Difficulty

• High Power and High Efficiency

High Efficiency → Low perveance, and High applied voltage In order to avoid difficulty, approach MBK like ILC.

High Power → More many –beam MBK, or Distributed MBK System Still need study about, cathode loading, minimize gun arching, RF window study

21 October 2010

Simple survey of CLIC-L

Constraint: Output power of 40MW, efficiency of 70%, and cathode loading of 2A/cm^2. Search of MBK direction.
 Pulse width of about 150us is not short, and cares to cathode loading, allowable field gradient and window capability are necessary.

No. of Beam		1	6	8	12	16	24	36
P0 Total	MW	40	40	40	40	40	40	40
Power/beam	MW	40	6.67	5.00	3.33	2.50	1.67	1.11
Voltage	kV	438.0	213.9	190.7	162.1	144.5	122.9	104.5
Current	Α	130.5	44.5	37.5	29.4	24.7	19.4	15.2
Beamlet power/bear MW		57.14	9.52	7.14	4.76	3.57	2.38	1.59
Perveance	uP	4.5E-07						
Efficiency	%	70	70	70	70	70	70	70
Cathode loading	A/cm^2	2	2	2	2	2	2	2
Cathode Diametr	cm	9.1	5.3	4.9	4.3	4.0	3.5	3.1

Another Example (Eff. of 70% and 75%)

Eff. of 70% needs uP=0.45. Cathode loading of 3A/cm² in this case.

Eff. of 75% needs uP=0.3. Cathode loading of 3A/cm^2 in this case.

No. of Beam		1	6	8	12	16	24	36
P0 Total	MW	40	40	40	40	40	40	40
Power/beam	MW	40	6.67	5.00	3.33	2.50	1.67	1.11
Voltage	kV (438.0	213.9	190.7	162.1	144.5	122.9	104.5
Current	Α	130.5	44.5	37.5	29.4	24.7	19.4	15.2
Beamlet power/bea	u MW	57.14	9.52	7.14	4.76	3.57	2.38	1.59
Perveance	uP	4.5E-07						
Efficiency	%	70	70	70	70	70	70	70
Cathode loading	A/cm^2	3	3	3	3	3	3	3
Cathode Diametr	cm	7.4	4.3	4.0	3.5	3.2	2.9	2.5
No. of Beam		1	6	8	12	16	24	36
P0 Total	MW	40	40	40	40	40	40	40
Power/beam	MW	40	6.67	5.00	3.33	2.50	1.67	1.11
Voltage	kV	501.1	244.7	218.1	185.5	165.3	140.6 🤇	119.5
Current	Α	106.4	36.3	30.6	24.0	20.2	15.8	12.4
Beamlet power/bea	u MW	53.33	8.89	6.67	4.44	3.33	2.22	1.48
Perveance	uP	3E-07						
Efficiency	%	75	75	75	75	75	75	75
Cathode loading	A/cm^2	3	3	3	3	3	3	3
Cathode Diametr	cm	6.7	3.9	3.6	3.2	2.9	2.6	2.3

Summary

- HLRF configuration of ILC is shown.
- 10 MW MBK status including basic idea is shown.
- Other alternative RF sources in ILC and some recent L-band tubes developed in KEK are presented.
- Basic simple numerical consideration for the CLIC L-band klystron for driving beam system, and key issues are also listed up.