

Vacuum in the CLIC MDI and BDS Regions

Ray VENESS CERN/TE-VSC

With thanks to:

P.Chiggiato, K.Elsener, C.Garion, L.Gatignon, H.Gerwig, E.Gschwendtner, A.Herve, M.Modena, G.Rumolo, R.Tomas

Contents

- O Introduction
- O Pressure requirements in the MDI
- O QD0 vacuum
- O Sectorisation
- O Detector beampipes
- O Post collision line
- O BDS vacuum
- O Conclusions

Introduction

O CLIC MDI and BDS Vacuum

- O Four separate systems: CLIC detector(s), QD0, post-collision line, plus the BDS
 - O Significantly different geometry and functional requirements
- O Linked by the same CLIC vacuum system
 - O Physically linked by vacuum chambers
 - O Coupled by beam dynamics and pressure distributions

O Starting point

- O CLIC MDI Vacuum is at a conceptual level, but we are not starting from zero- We can learn from:
 - O CLIC (and ILC) machine vacuum design for calculation tools and expertise
 - O ILC design particularly for detector layouts
 - O LHC vacuum particularly for technology
- O ...but we need to be aware of the differences
 - O The QD0 in CLIC is at room temperature, so has no inherent pumping speed
 - O Different beam parameters, leading to different dynamic vacuum issues
- O CLIC BDS is at a very early conceptual level
 - O First approximations of vacuum system based on optics layouts

Pressure Requirements for BDS and Experiment

- O Requirements from beam dynamics
 - O Recent calculations from Rumolo [1] show that coherent instabilities are not an issue with pressures in the last 20m of the BDS upto 10⁵ nTorr (~1.3x10⁻⁴ mbar)
 - O He notes however that incoherent effects and emittance growth should be studied
- O Requirements from the experiments
 - O ILC simulations [2] suggest that beam-gas background is not an issue at 10³ nTorr (~1.3x10⁻⁶ mbar)
 - O Beam-gas background could be more significant if CLIC operates at lower than nominal luminosity (Re: LHC)
 - O Requirement needs to be confirmed for the CLIC experiments
- O These pressure requirements suggest that a non-baked solution could be adopted for the QDO, and possibly also the experimental sector

Unbaked QD0 Vacuum

O Geometry

- O QD0 magnet beampipe ~7.6mm inner diameter, magnetic length ~2.75m giving a realistic pump separation of ~4 m
 - O Post-collision beampipe with 10 mrad opening angle passes through magnet structure
- O The room temperature hybrid magnet design being proposed is not easily compatible with either bakeout or distributed pumping (eg, NEG) of the vacuum system
 - O Permanent magnet materials are sensitive to bakeout temperatures
 - O Small aperture with no clearance, so no room for insulation or heaters

'Hybrid v2' QD0 cross-section, showing incoming and post-collision beamlines

M.Modena

Unbaked Pressure Profile in

QDO

O Assumptions

- O Unbaked, but UHV clean system, dominated by outgassing of $\rm H_2O$
 - O Outgassing rates for unbaked systems are variable uncertainty on result
 - O Assume 1x10⁻¹⁰ mbar.l.s.cm⁻² after 100h
- O This means the system has to be pumped for 100h before beam
 - O Incompatible with a 'fast' push-pull
- O ... or it is not exposed to air during the pushpull operation

O Calculated static pressures

- O Average 4.8x10⁻⁷ mbar [~3.6x10² nTorr]
- O Peak $8.1x10^{-7}$ mbar [$-6x10^{2}$ nTorr]
- O Achievable pressure is dominated by the small conductance of the tube and the outgassing rate

O Dynamic pressure components

- O Additional gas load due to surface bombardment by ions, electrons and photons will increase these static pressures
 - O Some data starting to arrive, but calculations are time-consuming

Outgassing rates of water on stainless steel [F.Dylla CAS 2006]

Static partial pressure of H₂0 [mbar] along the QD0 beam tube [m]

Baseline Sectorisation Scheme

O Reasons for Sectorisation

- O Separate machine, QD0, Detector and post-collision for independence and safety during shutdowns
- O Add additional sector valve to maintain cleanliness in both QDO and detector
 - O Keep QD0 and experiment either under vacuum or dry gas during push-pull
 - O Essential to reduce pump-down time after detector push-pull in a non-baked system
- O Possibly add fast shutter to protect detectors from incidents in post-collision

Vacuum Equipment on beamline (first draft)

O Features

- O 2 sector valves for push-pull
- O UHV Push-pull flange
 - O will this need to be remote due to activation?
- O Bellows to allow the flanges to separate

O Features

- O Pumps and gauges on experimental and QD0 sectors
- O Port with valve to pump-down the connected sector
 - O Connect mobile pumping station

QD0-Experiment Conceptual Layout

H.Gerwig, 8th CLIC MDI meeting

Experimental Beampipe Geometry

Beryllium segment 60 mm diameter plus conical segment Stainless steel conical segment increasing to ~ 400 mm diameter

ilc

IP Vacuum

• 0-th draft of IR region (A. Seryi)

CLIC experimental vacuum geometry is based on the ILC

Chamber technology similar to LHC (LHCb-UX85/1 chamber shown)

Detector Beampipes

O Material

O Baseline is beryllium

- O Best material in terms of transparency (radiation length, specific stiffness)
- O Uncoated beryllium has high desorption yields which can give beam dynamics and vacuum issues
- O Beryllium chambers may therefore need to be coated, which could also require bakeout

O Alternatives

O Carbon composite is not far behind beryllium for transparency, and should not be forgotten, particularly for non-baked designs

O Other issues

O Impedance and trapped RF modes

O Conical transitions or RF shields may be needed at the end of the large cone

LHCb UX85/3 Conical beryllium pipe

RF screen in the CMS end cap beampipe

Experimental Beampipe Thickness

O Beryllium Section thickness

- O Likely to be limited by
 - O Construction technology (currently 0.5~0.7 mm for machined pipes)
 - O leak-tightness limits
 - O Risks of damage during handling
- ... rather than mechanics
- O Conical chambers have been made for LHC

O Stainless cone

- O Limited by buckling under external pressure
- O Initial ANSYS calculations show realistic thickness in the range 2~3 mm at 400 mm diameter end
- O Optimisation by:
 - O Stepping of wall thickness with diameter
 - O Reinforcing ribs
 - O Alternative materials (composites etc)

Post-Collision Line

O Geometry

O 150m+ length of large diameter (~1m) vacuum chambers

O Absorbers

- O Several absorbers in the kW-200 kW capacity range outside the vacuum system
- O Will require a number of intermediate 'windows'

O Vacuum system exit window

- O Large diameter (~1m) window
- O High continuous power (~10 MW)
 - O 'Transparent' window
 - O Cooling required?

LHC beam dump window: 600mm aperture, made from carbon-carbon composite supporting a leak-tight foil. Designed for 362 MJ of full LHC beam

Post-Collision Line

O Vacuum system issues

- O Large volumes at medium-high vacuum
 - O Pressure requirement for CLIC operation?
 - O Cf. LHC beam dump at 10⁻⁷ mbar (~100 nT)
- O High pumping speeds will be required
 - O Outgassing of large surface areas
 - O Local gas loads from heating close to absorbers
 - O .. therefore large pumps
- O Radiation environment
 - O Pumps need to be close to the chambers to maximise conductance
 - Need access to pumping systems for maintenance

LHC beam dump line, showing ion pump

BDS Vacuum

O Overview of vacuum system

- O 206 dipole magnets with 24mm beampipe radius
- O 70 quadrupoles with 8mm radius
- O Drift vacuum chamber sections
- O Special sections such as collimation and crab cavities

O Vacuum requirement

- O Average pressure of 10nT (~1.3x10⁻⁸ mbar) from beam dynamics [1]
- O Preliminary calculations show that:
 - O Dipole chambers can be unbaked with lumped (ionisation) pumps at the extremities
 - O Quadrupole chambers will require distributed pumping could imagine to use the design from the CLIC main module chamber with NEG strip [2]

Conclusions

O CLIC MDI conceptual design

- O Medium vacuum requirement from beam dynamics means that unbaked DQ0 appears feasible
 - O However, the push-pull detector layout means that vacuum pumpdown times must be short, so contamination of surfaces with water must be prevented
 - O Leads to proposed sectorisation scheme
- O QD0 pressure is approaching background limit for ILC detectors
 - O Dynamic pressure not yet included
 - O QD0 magnet concept leaves no margin to improve pressures or surfaces

O Experimental vacuum system

- O Geometry based on ILC designs, with technology developed for the LHC
- O Requires confirmation of acceptable background and dynamic vacuum to see if bakeout of the sector is required

O Post collision and remaining BDS vacuum

O Still in the preliminary design stages