

Progress on investigation of dynamic vacuum (RF structures only)

Sergio Calatroni With Cedric Garion, Chiara Pasquino, Pedro Costa Pinto, Mauro Taborelli

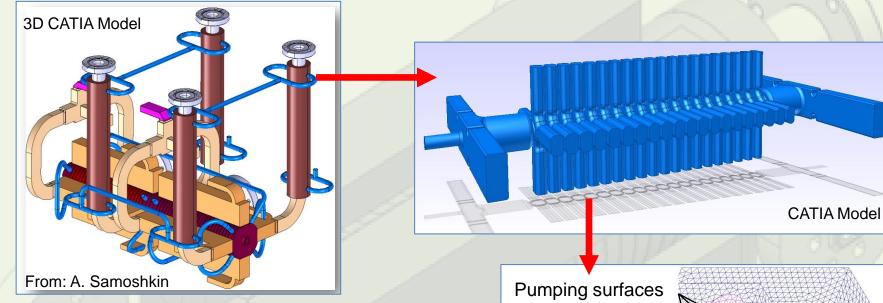
- Requirements from beam dynamics
- Static vacuum
- Dynamic vacuum
 - Breakdowns
 - Dark current
- Experimental approach
 - ESD measurements
 - Direct measurement
- Outlook and conclusions

 The dynamic vacuum threshold for preventing fast ion beam instability (essentially do to direct field ionization and not the usual impact ionization) is:

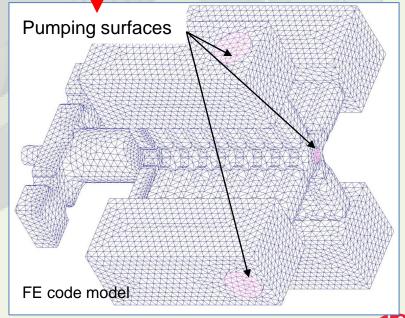
 H_2 and CO_2 partial pressures < 10⁻⁹ Torr

- This happens for practically all the main LINAC length, inside the RF accelerating structures
- For details see <u>G. Rumolo, J-B Jeanneret, D. Schulte</u> and <u>C. Garion (this workshop)</u>

- Several tools have been developed for the calculation of dynamic vacuum:
 - Thermal analogy implemented in FEM by Cedric Garion
 - Monte-Carlo simulations implemented in CASTEM (FEM code) by Cedric Garion (<u>CLIC09 Workshop</u>)
 - Electrical analogy implemented in PSpice, with conductance of single elements calculated by Monte-Carlo by Pedro Costa Pinto (<u>TS Workshop 08</u>)
 - Analytical models by Volker Ziemann (Uppsala University)

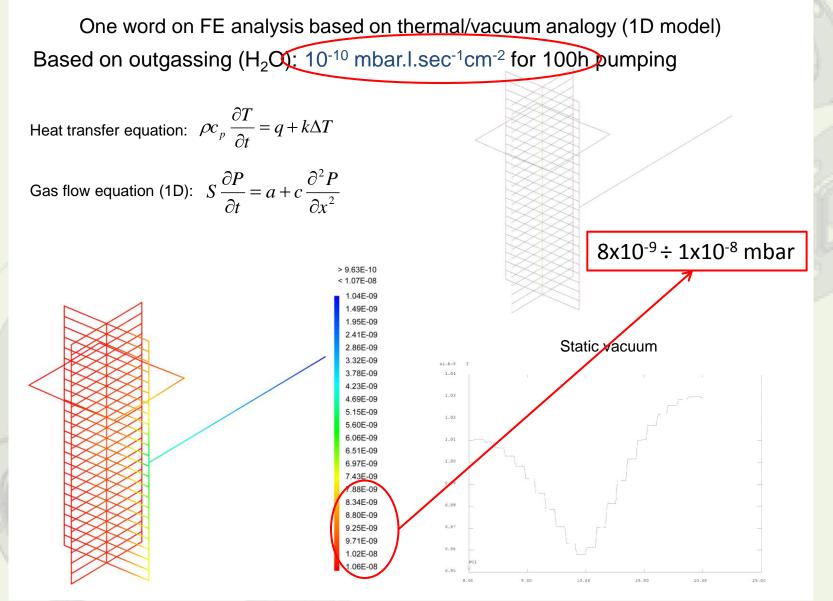

All tools have been crosschecked and agree within 10%

Static vacuum – thermal analogy

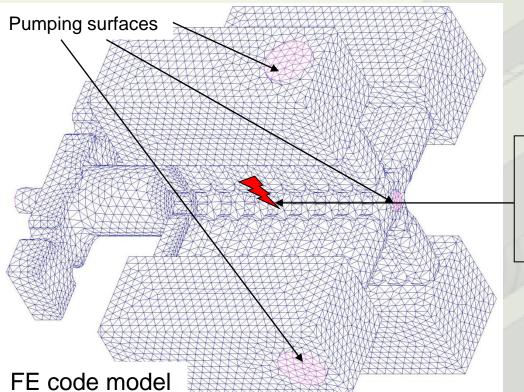


Calculations are based on the equivalence of vacuum and thermal conductances, which are evaluated by FE analysis, and using the following outgassing values (H_2O):

- 10⁻¹⁰ mbar.l.sec⁻¹cm⁻² for 100h pumping
- 10⁻¹¹ mbar.l.sec⁻¹cm⁻² for 1000h pumping

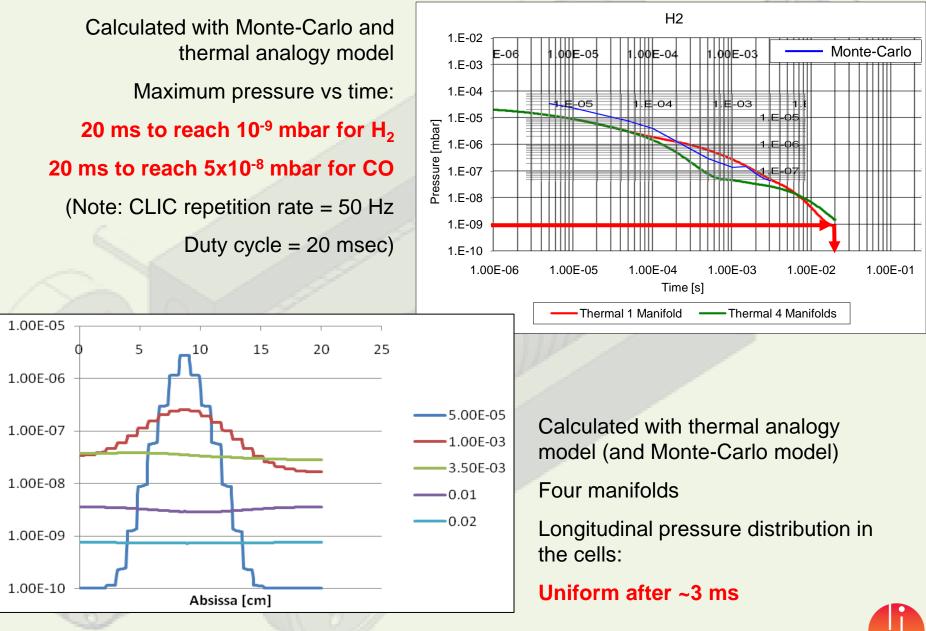

Does not take into account re-adsorpion

Static vacuum - Results



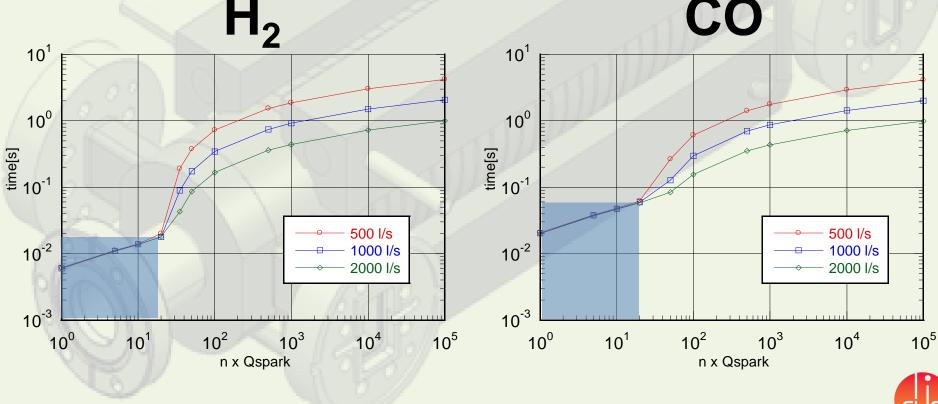
Dynamic vacuum I - Breakdown

2.10^{12} H₂ or CO molecules released during breakdown (in a baked system)


Data measured in DC "spark test" reported in PRST-AB12, 092001 (2009)

Dynamic vacuum I – Results

IWLC 2010

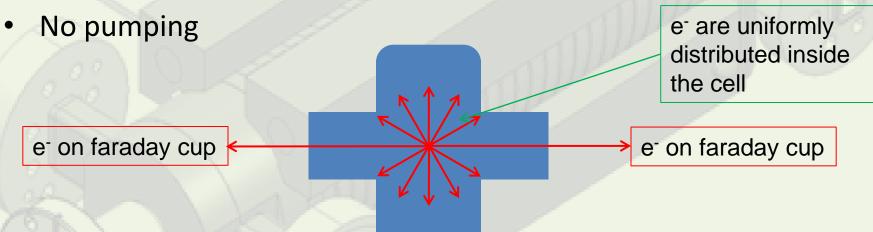

Pressure [mbar]

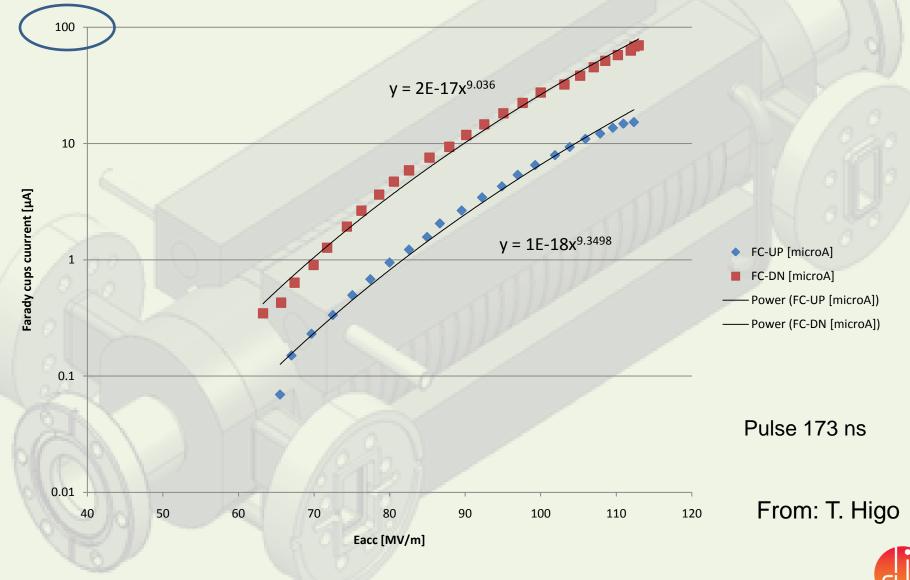
IWLC 2010

Dynamic vacuum I – Effect of a manifold

- Calculated recovery time to 10⁻⁸ mbar with PSpice for a quadrant type structure in a CTF2 type tank (old data)
- For one sparks outgassing Qspark, or multiples of it equal to n x Qspark
- Two regions: first is determined by the filling time of the cavity + tank volume
- Second is determined by the applied pumping speed

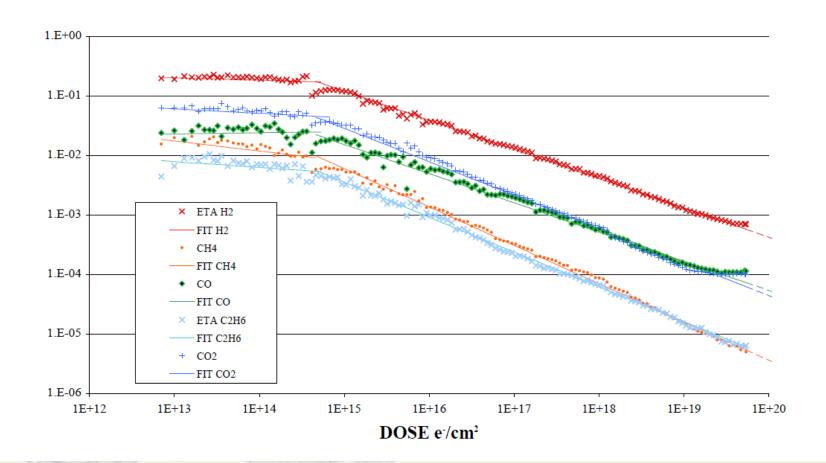
Dynamic vacuum II – Dark currents


- Dynamic vacuum due to field emission: the problem
 - Electrons are field-emitted from high field regions in absence of a breakdown (dark current).
 - They hit the cavity wall releasing gas by Electron Stimulated Desorption (ESD)
 - Outgassed molecules are emitted with eV speeds, but after first collision they are thermalized and then travel <1 mm during the 200 ns RF pulse, thus cannot escape from RF structure.
 - Timescale of the order of the RF pulse duration: outgassing at the beginning of the pulse may affect bunches within the same train.
 - Very difficult to measure: we may have p>10⁻⁹ mbar locally during the 200 ns RF pulse (in all structures) in a small volume. When this is diluted and pumped through the conductance of the RF structure, it may not be measureble


- Only one cell is modelled
- Electrons are field-emitted, then accelerated and distributed uniformly in the cell
- Dynamic vacuum by ESD: desorbed molecules fill the whole cell volume

Cell [mm]	dimensions	outer area	beam area	copper area	cell volume [mm3]	beam channel [mm3]
Ext diam	20	1086.99	28.27	1030.44	2293.36	206.40
Iris diam	6	100	£3,0//		cell volume [liters]	beam channel [liters]
Length	7.3	8 93	e0///		2.29E-03	2.06E-04

Faraday cup measurements - T18_VG24_Disk_2 - KEK



ESD data

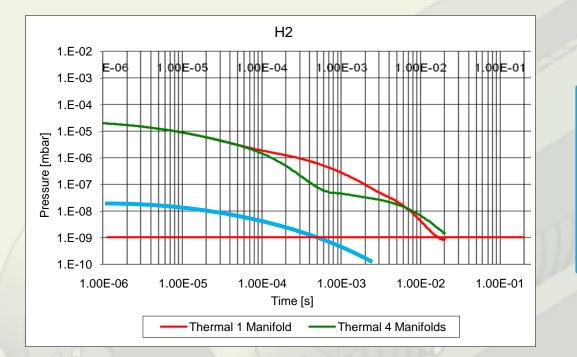
• No much data on unbaked copper

(N. Hilleret, CAS Vacuum School 2006 - G. Vorlaufer CERN-Thesis (2002))

				Solid angle (one			11
Total e- current [A]	Pulse duration [ns]	Total charge [C]	Number of electrons	cell, one side)	on copper	Dose per pul	ce (e- /cm2)
1.00E-04	200	2.00E-11	1.25E+08	0.027439024	4.56E+09		4.42E+08

	ESD coefficient for H2 (unbaked copper)	Total H2 molecules	Equivalent pressure at RT (total volume)
G. Vorlaufer	2.00E-01	9.11E+08	1.12E-08
CERN-Thesis (2002)	ESD coefficient for CO2 (unbaked copper)	Total CO2 moiecules per KF pulse	\mathbf{X}
	6.00E-02	2.73E+08	3.37E-09
Benvenuti et	ESD coefficient for H2 (copper baked 250 C)	Total H2 molecules per RF pulse	
al LEP2 94-21	1.30E-02	5.92E+07	7.29E-10
	ESD coefficient for CO2 (copper baked 250 C)	Total CO2 molecules per RF pulse	01
	6.00E-03	2.73E+07	3.37E-10
L al		1	all bo
12	ESD coefficient for H2 (copper baked 300 C)	Total H2 molecules per RF pulse	X
Mathewson	3.00E-03	1.37E+07	1.68E-10
VSTA 15 1997) 3093	ESD coefficient for CO2 (copper baked 300 C)	Total CO2 molecules per RF pulse	12V
18	1.60E-03	7.29E+06	8.98E-11

10⁷ pulses to start conditioning 10,120,000 maximum allowed 10⁹ pulses for ÷10 ESD reduction (200 days at 50 Hz) 3 times maximum allowed

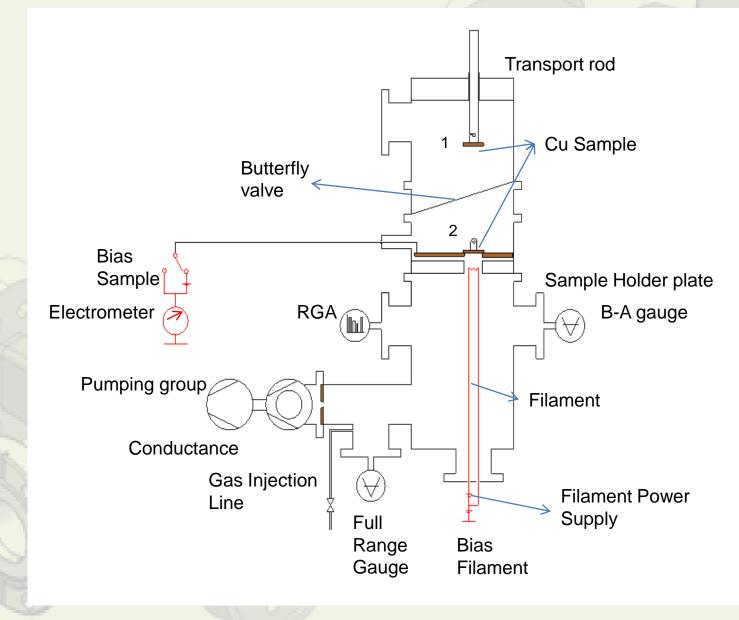

For the dynamic vacuum of breakdowns we were considering 2x10¹² molecules.

Dynamic vacuum I – Results

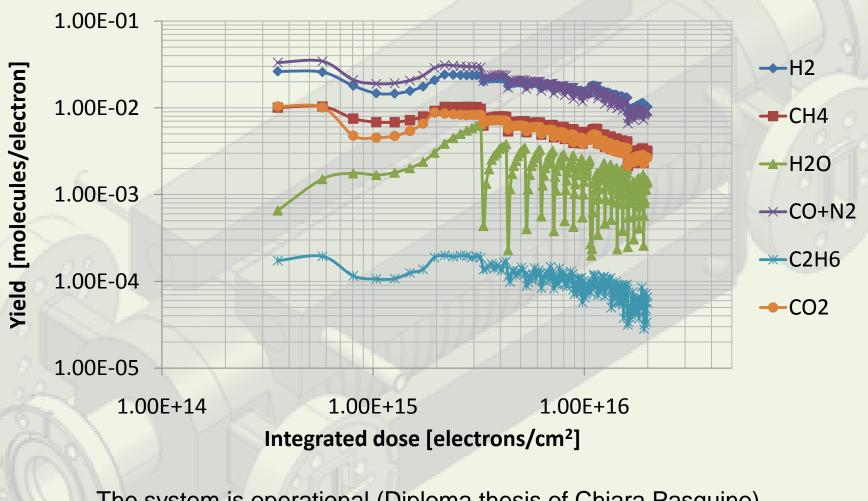
Pressure goes to < 10⁻⁹ mbar in less than 1 msec ! This is faster than the sampling time of common vacuum gauges...

Same plot as for dynamic vacuum due to breakdowns (2x10¹² molecules released)

Extrapolating to 1000 less molecules released due to ESD

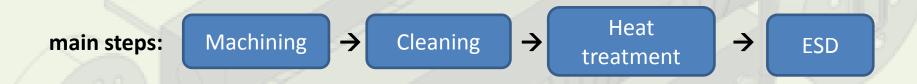

- Get more precise data on ESD: higher electron energies, effect of surface treatments and of fabrication procedure
- Obtain e⁻ trajectories maps for reasonable assumptions of distributions of field-emitters, and calibrate the intensities with known Farady-cup dark current measurements.
- Couple the above data as input for Monte-Carlo simulations of trajectories and densities of outgassed molecules

ESD measurement system



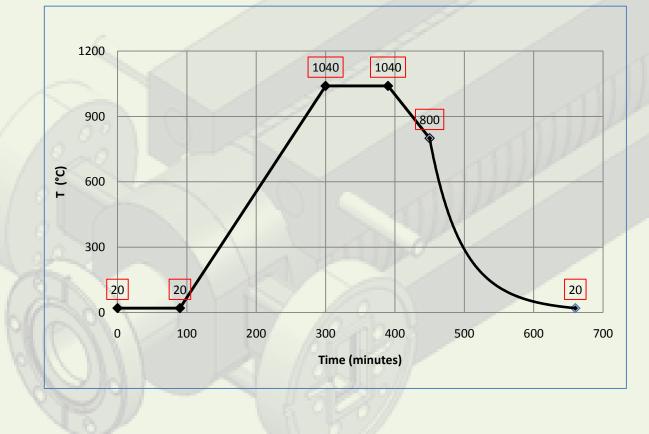
First results (dummy Cu specimen)

The system is operational (Diploma thesis of Chiara Pasquino)



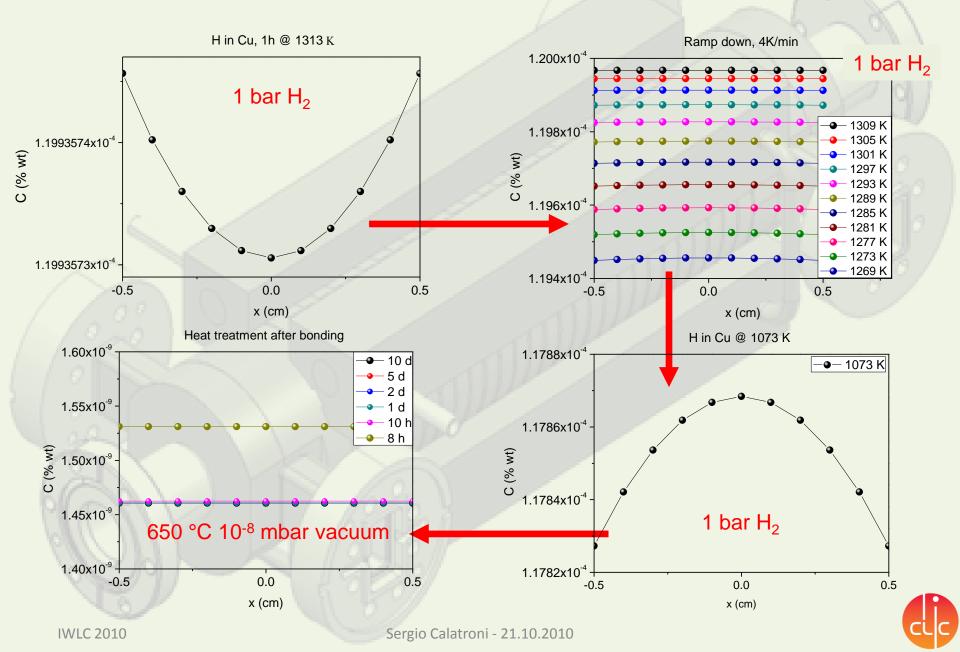
Rationale

- We want to study the effect of surface treatments and fabrication on ESD
- Large number of samples have been prepared (will be tested also by "spark-test", SEM, XPS)

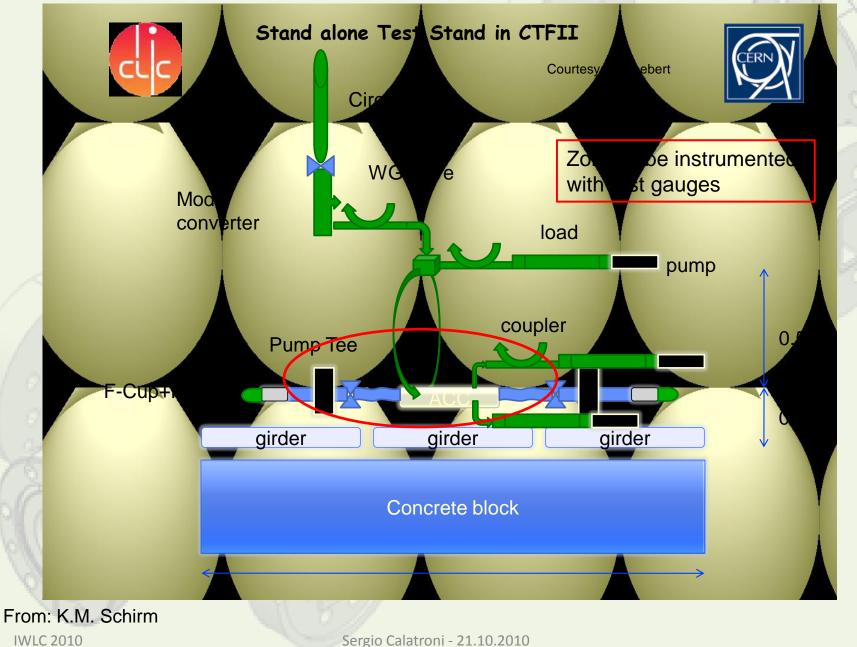

Vacuu	m	-			100											10		1											
	R	EFEREN	ICE		Vacuur	n	Arg	gon (ml	bar)	ł	-12 (mba	ar)	ŀ	l2 (1 ba	nr)		Vacuur	n	Ar	gon (m	bar)	Hydı	rogen (mbar)	Hyd	rogen (1 bar)		
	w/o	Passiv	SLAC	w/o	Passiv	SLAC	w/o	Passiv	SLAC	w/o	Passiv	SLAC	w/o	Passiv	SLAC	w/o	Passiv	SLAC	w/o	Passiv	SLAC	w/o	Passiv	SLAC	w/o	Passiv	SLAC		
0.5	etch	ation	etch	etch	ation	etch	etch	ation	etch	etch	ation	etch	etch	ation	etch	etch	ation	etch	etch	ation	etch	etch	ation	etch	etch	ation	etch		
CERN	2	2	2	2	2	2		1						1		2	2	2	2	2	2							24	
	Re.	100					100						1																
Bodycote		. ``					2	2	2	2	2	2										2	2	2				18	
SLAC	Sec. 1		N							10			2	2	2										2	2	4	14	
10	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	4	56	
elliptical				1.00																									

- Rationale for the calculations:
 - H₂ bonding introduces hydrogen in the copper, subsequently outgassed in vacuum annealing.
 - Any H₂ leftover may influence ESD

Bonding at 1040 °C with 1 bar of H_2


Annealing at 650 °C for 10 days 1x10⁻⁸ mbar vacuum

Calculated data (assume Cu sheet 1 cm thick)



Direct measurements, anyway

Outlook 1

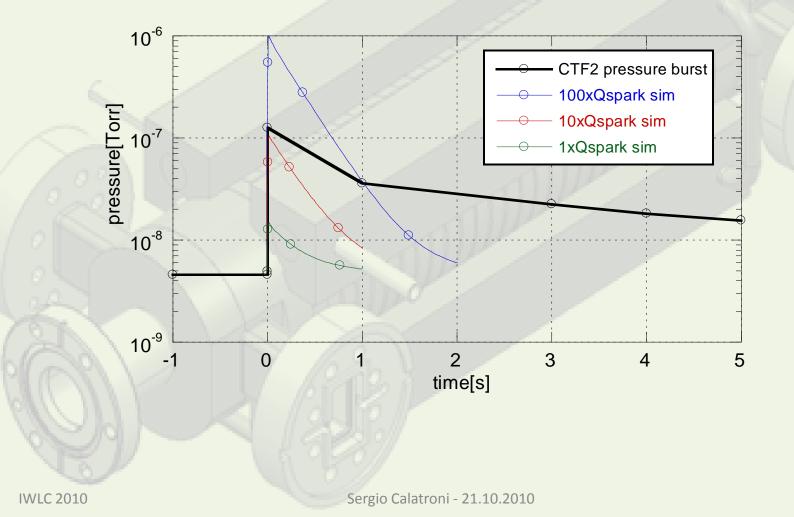
- Static vacuum seems to be achieved only marginally with present design
 - Need more precise data on water re-adsorption (sticking probability depends on coverage)
- Dynamic vacuum due to breakdowns seem to be under control (recovery time ≤ pulse repetition)
 - However, data from RF tests are needed for further crosschecking

Outlook 2

- Dynamic vacuum due to dark currents: still open question
- Experimental programme:
 - ESD data on unbaked copper at high e⁻ energy from CERN
 - Dark current simulations from SLAC ACE3P
 - Introduce these into MC+FEM models and get gas distribution
 - Direct measurements will be attempted in 12 GHz test bench (although feasibility is questionable)

Molecule speed

	Atomic mass	Molecule speed	Molecule displacement in RF pulse [mm]					
H2	2	1579	3.16E-01					
Н2О	18	526	1.05E-01					
со	28	422	8.44E-02					
CO2	44	336	6.73E-02					


Assuming a molecular speed of 300 K = 0.026 eV

Tentatively crosschecked with CTF2 data + Montecarlo simulations

