MDI Integration at CLIC

Permanent evolution of CLIC MDI

Parameter drawing for 2 detectors	2 experimental caverns connected via a transfer tunnel	Interface BDS/IP extremely short no pac-man but ring chicane with only linear movement	Each detector on a platform
All FF magnets on a pre-isolator exchangeable via experimental cavern	A two-in-one support tube with eigen-frequencies tuned on function and purpose	A sectorisation of the vacuum that allows pre- pumping, no bake- out, pumping port	Stabilisation directly under QD0 Pre-alignment on pre-isolator in the tunnel
Sectorisation for IP, sliding doors separate data taking & maintenance area	Longer experiment adapts via end coils to shorter experiment	Lumical, Kicker Beamcal, BPM and vacuum valves fully integrated	Survey gallery and emergency escape tunnel integrated in cavern design

Changes since Beijing LCWS10

- Reduction of 1 lambda in HCAL
- Consequences on length, radius and L*!
- Allow exchange of FF magnets through IR
- Optimize support tube design & pre-isolator
- Include some services & rack space into IR
- Alignment channels through endcap

Consequences of a 1λ cut in Hcal

- Cutting 1 interaction
 length in the endcap HCAL
 shortens the detector ca.
 300 mm/ per side
- 2. Also radially space had to be re-arranged between Hcal barrel and
- 3. coil dimensions

See Talk of Benoit Curé WG5

Actual CLIC detectors in comparison

CLIC_SiD

Change of FF magnets possible

Change of FF magnets possible

Optimize support tube design

QD0_Support_tube Total Deformation 03/09/2010 09:55

> The tuning of the tube's eigenfrequencies led to the reinforced polygonal cross-section shown

Courtesy F. Ramos

Pre-Isolator FEA simaulation

Pre-Isolator Prototype at P5

Cavern: Magnet powering and Cryoline

Separated interaction region

Detector on IP

Detector on IP seen from tunnel

Tunnel end – Ringchicane - Yoke

clc

End-cap analysis for alignment

60 mm slots for alignment channels

- The integration of the CLIC MDI region has made tremendous progress since 2009
- Many problems have been studied and solved(!)
- There are many (sometimes hidden) details that makes the whole design looking sound
- We (A. Hervé, A. Gaddi, N. Siegrist, F. Ramos) are confident of the actual design

Thank You for your attention!

